- Tytuł:
- Second order triangular graceful graphs
- Autorzy:
-
Sakthi Sankari, R.
Syed Ali Nisaya, M. P. - Powiązania:
- https://bibliotekanauki.pl/articles/1193377.pdf
- Data publikacji:
- 2021
- Wydawca:
- Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
- Tematy:
-
Second order triangular graceful graph
Second order triangular graceful labeling
Second order triangular number - Opis:
- Let G=(V,E) be a graph with p vertices and q edges. A second order triangular graceful labeling of a graph G is an one to one function φ:V(G)→{0,1,2,…,B_q} where B_q is the qth second order triangular number, ie., B_q=1/6 q(q+1)(2q+1), that induces a bijection φ^*:E(G)→{B_1,B_2,…,B_q} of the edges of G defined by φ^* (uv) =|φ(u)-φ(v)| ∀ e=uv ∈E(G). A graph which admits such labeling is called a second order triangular graceful graph. In this paper, we introduce second order triangular graceful labeling and we prove that star, subdivision of star, nK_1,3, nK_2, bistar, path, comb, coconut tree, shrub and Y-tree are second order triangular graceful graphs.
- Źródło:
-
World Scientific News; 2021, 155; 140-154
2392-2192 - Pojawia się w:
- World Scientific News
- Dostawca treści:
- Biblioteka Nauki