Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Syed Ali, M." wg kryterium: Autor


Wyświetlanie 1-7 z 7
Tytuł:
Second order triangular graceful graphs
Autorzy:
Sakthi Sankari, R.
Syed Ali Nisaya, M. P.
Powiązania:
https://bibliotekanauki.pl/articles/1193377.pdf
Data publikacji:
2021
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Second order triangular graceful graph
Second order triangular graceful labeling
Second order triangular number
Opis:
Let G=(V,E) be a graph with p vertices and q edges. A second order triangular graceful labeling of a graph G is an one to one function φ:V(G)→{0,1,2,…,B_q} where B_q is the qth second order triangular number, ie., B_q=1/6 q(q+1)(2q+1), that induces a bijection φ^*:E(G)→{B_1,B_2,…,B_q} of the edges of G defined by φ^* (uv) =|φ(u)-φ(v)| ∀ e=uv ∈E(G). A graph which admits such labeling is called a second order triangular graceful graph. In this paper, we introduce second order triangular graceful labeling and we prove that star, subdivision of star, nK_1,3, nK_2, bistar, path, comb, coconut tree, shrub and Y-tree are second order triangular graceful graphs.
Źródło:
World Scientific News; 2021, 155; 140-154
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Higher order triangular graceful labeling of some graphs
Autorzy:
Sakthi Sankari, R.
Syed Ali Nisaya, M. P.
Powiązania:
https://bibliotekanauki.pl/articles/1193398.pdf
Data publikacji:
2021
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
fifth order
fifth order triangular graceful graph
fifth order triangular graceful labeling
fifth order triangular numbers
fourth order
third order
Opis:
A (p, q) graph G is said to admit higher order triangular graceful labeling if its vertices can be labeled by the integers from 0 to qth higher order triangular numbers such that the induced edge labels obtained by the absolute difference of the labels of end vertices are the first q higher order triangular numbers. A graph G which admits higher order triangular graceful labeling is called a higher order triangular graceful graph. In this paper, third order, fourth order, fifth order triangular graceful labeling are introduced and third order, fourth order, fifth order triangular graceful labeling of star graph, subdivision of star, nK_2, path, comb, bistar, coconut tree, nK_1,3 are studied.
Źródło:
World Scientific News; 2021, 156; 40-61
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Some results on centered triangular sum graphs
Autorzy:
Baskar, M.
Namasivayam, P.
Syed Ali Nisaya, M. P.
Powiązania:
https://bibliotekanauki.pl/articles/1193374.pdf
Data publikacji:
2021
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Centered triangular numbers
centered triangular sum graphs
centered triangular sum labeling
Opis:
A centered triangular sum labeling of a graph G is a one-to-one function f : V (G) → N ∪{0} that induces a bijection f *: E(G) →{B_1 〖,B〗_2,…B_q} of the edges of G defined by f * (uv) = f(u) + f(v), for all e = uv ∊ E(G). The graph which admits such labeling is called a centered triangular sum graph.
Źródło:
World Scientific News; 2021, 155; 113-128
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Further results on centered triangular sum graphs
Autorzy:
Baskar, M.
Namasivayam, P.
Syed Ali Nisaya, M. P.
Powiązania:
https://bibliotekanauki.pl/articles/1193390.pdf
Data publikacji:
2021
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Centered triangular numbers
centered triangular sum graphs
centered triangular sum labeling
Opis:
Let G be a graph with p vertices and q edges. The nth centered triangular number is denoted by M_n, where M_n = 1/2 (3n2 - 3n + 2). A centered triangular sum labeling of a graph G is a one-to-one function : V (G) → N ∪{0} that induces a bijection f *: E(G) →{M_1 〖,M〗_2,…M_q} of the edges of G defined by f * (uv) = f(u) + f(v), for all e = uv ∊ E(G). The graph which admits such labeling is called a centered triangular sum graph. In this article, the centered triangular sum labeling of union of some graphs are studied.
Źródło:
World Scientific News; 2021, 156; 13-25
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Even Vertex Tetrahedral Mean Graphs
Autorzy:
Banu, A. Fathima
Chelliah, S.
Syed Ali Nisaya, M. P.
Powiązania:
https://bibliotekanauki.pl/articles/1193397.pdf
Data publikacji:
2021
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Tetrahedral number
even vertex tetrahedral mean graph
even vertex tetrahedral mean labeling
Opis:
The nth tetrahedral number is denoted by T_n and is of the form T_n = 1/6 n (n+1) (n+2). A graph G with p vertices and q edges is said to have an even vertex tetrahedral mean labeling if there exists an injective function f: V(G) →{0┤, 2, 4, . . . , 2T_q-2 , ├ 2T_q } such that the induced edge function f^*: E(G) →{T_1,T_(2 , . . .) ,T_q } defined by f^*(uv) = (f(u)+ f(v))/2 ∀ e=uv∈E(G) is a bijection. A graph which admits even vertex tetrahedral mean labeling is called an even vertex tetrahedral mean graph. In this paper, we introduce even vertex tetrahedral mean labeling and we prove that path, star, bistar, coconut tree, caterpillar, shrub, P_(m )@ P_n, banana tree, Y- tree and F-tree are even vertex tetrahedral mean graphs.
Źródło:
World Scientific News; 2021, 156; 26-39
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Some results on centered triangular graceful graphs
Autorzy:
Baskar, M.
Namasivayam, P.
Syed Ali Nisaya, M. P.
Mahendran, S.
Powiązania:
https://bibliotekanauki.pl/articles/1193414.pdf
Data publikacji:
2021
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Centered triangular numbers
centered triangular graceful graphs
centered triangular graceful labeling
Opis:
Let G be a graph with p vertices and q edges. The nth centered triangular number is denoted by C_n, where C_n = 1/2 (3n2 - 3n + 2). A centered triangular graceful labeling of a graph G is a one-to-one function f : V (G) → {0,1,…C_q} that induces a bijection f *: E(G) →{C_1 〖,C〗_2,…C_q} of the edges of G defined by f * (e) = │f(u) - f(v)│, for all e = uv ∊ E(G). The graph which admits such labeling is called a centered triangular graceful graph.
Źródło:
World Scientific News; 2021, 156; 176-191
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Two Modulo Three Sum Graphs
Autorzy:
Esakki, M. Vanu
Nisaya, M. P. Syed Ali
Powiązania:
https://bibliotekanauki.pl/articles/1030957.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Two modulo three sum graph
Two modulo three sum labeling
Opis:
Let G = (V, E) be a graph with p vertices and q edges is said to be a two modulo three sum graph if there is an injective function f from V(G) to { a∶0≤a≤3q-1 and either a≡0(mod 3) or a≡2(mod 3)} where q is the number of edges of G and such that finduces a bijectionf^* from E(G) to {a∶2≤a≤3q-1 and a≡2(mod 3)} given byf^* (uv)=f(u)+f(v)and the function f is called two modulo three sum labeling of G. In this paper, we introduce an analog of sum labeling known as two modulo three sum labeling and we define two modulo three sum labeling of some tree related graphs. Also we prove that split star, mirror path graph, complete bipartite graph and C_4 ʘ〖nK〗_1 are two modulo three sum graphs.
Źródło:
World Scientific News; 2020, 145; 274-285
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies