Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Autocorrelation" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Zastosowanie statystyki przestrzennej do analizy wynagrodzeń na poziomie powiatów
The use of spatial statistics in the analysis of salaries at poviat level in Poland
Autorzy:
Ręklewski, Marek
Powiązania:
https://bibliotekanauki.pl/articles/1968010.pdf
Data publikacji:
2022-01-31
Wydawca:
Główny Urząd Statystyczny
Tematy:
wynagrodzenia
rynek pracy
statystyka przestrzenna
autokorelacja przestrzenna
salary
labour market
spatial statistics
spatial autocorrelation
Opis:
Zróżnicowanie przestrzenne wynagrodzeń stanowi przedmiot wielu badań naukowych zarówno w ujęciu teoretycznym, jak i empirycznym. Czynnikami determinującymi wysokość wynagrodzeń w Polsce są m.in. struktura i rodzaj działalności prowadzonej przez przedsiębiorstwa, specyficzne dla danego regionu i zależne od jego lokalizacji. Celem badania omawianego w artykule jest identyfikacja zależności przestrzennych zachodzących pomiędzy powiatami pod względem poziomu przeciętnych miesięcznych wynagrodzeń brutto z zastosowaniem statystycznych metod autokorelacji przestrzennej. Analizowano dane statystyczne za lata 2010–2019 zaczerpnięte z Banku Danych Lokalnych GUS. Wykorzystano miary globalne i lokalne. Do obliczenia globalnych parametrów autokorelacji przestrzennej posłużyły statystyki I Morana i C Geary’ego, a do identyfikacji autokorelacji lokalnej – statystyka Ii Morana, należąca do lokalnych wskaźników przestrzennych z grupy LISA (Local Indicators of Spatial Association). Istotność statystyczną statystyk globalnych zweryfikowano przy wykorzystaniu podejścia randomizacyjnego opierającego się na momentach teoretycznych. Z globalnych statystyk I Morana i C Geary’ego wynika, że w badanym okresie pomiędzy powiatami występowała istotna (bardzo słaba lub słaba) dodatnia autokorelacja przestrzenna pod względem poziomu przeciętnych miesięcznych wynagrodzeń brutto. Świadczy ona o tym, że istnieją przestrzenne struktury powiatów o podobnych wartościach, a więc klastry charakteryzujące się wysokimi lub niskimi wartościami przeciętnej płacy. Wzrost wartości statystyki I Morana oraz spadek C Geary’ego w analizowanych latach wskazuje na zmniejszenie się zróżnicowania przeciętnych miesięcznych wynagrodzeń pomiędzy powiatami, a tym samym na wzrost autokorelacji przestrzennej. Analiza otrzymanych statystyk lokalnych pozwoliła na wyróżnienie klastrów podobnych powiatów: mazowieckiego, pomorskiego i śląskiego, a także wskazała na występowanie powiatów odstających (ang. outliers).
The spatial differentiation of salaries is the subject of many scientific studies, both theoretical and empirical. One of the factors determining remuneration in Poland is the structure and type of business activity, specific for a given region and depending on its poviats (counties) in terms of the level of the average gross monthly salary by means of spatial autocorrelation statistical methods. The analysed statistical data for 2010–2019 come from the Local Data Bank (Bank Danych Lokalnych – BDL) of Statistics Poland. Global and local measures were used in the analysis. The calculation of the global parameters of spatial autocorrelation was based on the I Moran and C Geary statistics, while the Ii Moran statistic, which belongs to local spatial indicators from the LISA group (Local Indicators of Spatial Association), was used to identify the local autocorrelation. The statistical significance of the global statistics was verified by means of a randomisation approach based on theoretical moments. The I Moran and C Geary global statistics indicated a significant (very weak or weak) and positive spatial autocorrelation between poviats in terms of the level of average gross monthly salaries in 2010–2019, which shows the existence of spatial poviat structures of similar values, i.e. clusters with high or low values of average salaries. The increase in I Moran’s statistics and the growth of the C Geary in the analysed period indicate a decrease in the differentiation of average monthly salaries between poviats, thus signifying an increase in the dependence of spatial autocorrelation. The analysis of the results of the obtained local statistics allowed the determination of clusters of similar poviats in Poland, e.g. Mazowiecki, Pomorski and Śląski. Furthermore, the results of the analysis indicated the presence of outlier poviats.
Źródło:
Wiadomości Statystyczne. The Polish Statistician; 2022, 67, 1; 38-56
0043-518X
Pojawia się w:
Wiadomości Statystyczne. The Polish Statistician
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Przestrzenne zróżnicowanie poziomu życia ludności w ujęciu powiatów
Autorzy:
Malinowski, Mariusz
Powiązania:
https://bibliotekanauki.pl/articles/543429.pdf
Data publikacji:
2017
Wydawca:
Główny Urząd Statystyczny
Tematy:
living standard
linear ordering
classification of objects
spatial autocorrelation
poziom życia
porządkowanie liniowe
klasyfikacja obiektów
autokreacja przestrzenna
Opis:
Celem artykułu jest uporządkowanie liniowe i klasyfikacja powiatów Polski Wschodniej i Północno-Wschodniej ze względu na poziom życia mieszkańców, a także przeprowadzenie analizy autokorelacji przestrzennej na podstawie syntetycznych mierników poziomu życia. Do skonstruowania syntetycznego miernika oceny poziomu życia ludności wykorzystano wyselekcjonowany zbiór zmiennych diagnostycznych. Zastosowanie miernika syntetycznego, który zastępuje złożoną z wielu różnorodnych zmiennych charakterystykę obiektów umożliwia efektywny pomiar wielowymiarowego zagadnienia, jakim jest poziom życia mieszkańców. Rozwiązanie to pozwala także na uszeregowanie liniowe badanych obiektów. Badaniem objęto 101 powiatów w województwach: lubelskim, podkarpackim, podlaskim, świętokrzyskim i warmińsko-mazurskim. Wykorzystano w nim metody TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution), Warda oraz PAM (Partitioning Around Medoids, zwaną też k-medoids method). Przeprowadzono również analizę autokorelacji przestrzennej na podstawie statystyki Morana I. Głównym kryterium doboru zmiennych była ich kompletność i dostępność dla wszystkich badanych obiektów w 2014 r. Dane uzyskano z Banku Danych Lokalnych GUS.
The aim of this article is to order linearly and classify powiats in Eastern and North-Eastern Poland by the living standards of the population as well as to carry out spatial autocorrelation analysis based on the created synthetic indicators of the living standard. For the purpose of this article, a synthetic indicator was created to assess living standards of the population based on previously selected set of diagnostic variables. The use of synthetic indicators made it possible to replace the multi-variable description of objects with one statistical number. It enabled to measure a multidimensional area such as living standards of population as well as to perform a linear ordering of examined objects. 101 powiats in the Lubelskie, Podkarpackie, Podlaskie, Świętokrzyskie and Warmińsko-Mazurskie voivodeships were included in the research. The TOPSIS, Ward’s and PAM methods were used in the research. Moreover spatial autocorrelation analyses were carried out based on the Moran’s I statistics. The main criterium for selecting variables was completeness and their accessibility for all objects in the research in the year 2014. Data from the Local Data Bank were used for the research purposes.
Źródło:
Wiadomości Statystyczne. The Polish Statistician; 2017, 2; 52-71
0043-518X
Pojawia się w:
Wiadomości Statystyczne. The Polish Statistician
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie metody autokorelacji przestrzennej do analizy ubóstwa na obszarach wiejskich
Using the spatial autocorrelation method to analyse poverty in rural areas
Использование метода пространственной автокорреляции для анализа бедности в сельских районах
Autorzy:
Kołodziejczak, Anna
Kossowski, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/543929.pdf
Data publikacji:
2016-10
Wydawca:
Główny Urząd Statystyczny
Tematy:
metoda autokorelacji przestrzennej
ubóstwo
obszary wiejskie
Polska
method of spatial autocorrelation
poverty
rural areas
Polska
метод пространственной автокорреляции
бедность
сельские районы
Польша
Opis:
Celem artykułu jest prezentacja metody autokorelacji przestrzennej (LISA) do określenia stopnia koncentracji, czyli lokalnych powiązań przestrzennych występowania ubóstwa na obszarach wiejskich. Do analizy wzięto pod uwagę wskaźniki dotyczące osób żyjących poniżej kryterium dochodowego i korzystających z pomocy społecznej w latach 2009 i 2013 na podstawie publikacji GUS ,,Ubóstwo ekonomiczne w Polsce”. Kryterium takie jest określane jako próg ubóstwa ustawowego, jednak jego miara nie oddaje w pełni skali tego zjawiska. Brak corocznej waloryzacji progów ubóstwa powoduje spadek koncentracji tego zjawiska na obszarach wiejskich, natomiast podwyżka progów kryterium dochodowego przyczynia się do wzrostu zasięgu występowania ubóstwa.
The aim of the article is to present the method of spatial autocorrelation (LISA) to determine the degree of concentration, i.e. local spatial relationships of poverty incidence in rural areas. Indicators concerning people living below the income criteria and benefiting from social assistance between 2009 and 2013 have been taken into account for the analysis on the basis of GUS publication Economic poverty in Poland. Such a criterion is defined as the statutory threshold of poverty, but the measure does not fully reflect the scale of this phenomenon. No annual indexation of the thresholds of poverty causes a decrease in the concentration of this phenomenon in rural areas, and increase the income threshold criterion contributes to the range of incidence of poverty.
Целью статьи является представление метода пространственной автокорреляции (LISA) для определения степени концентрации, то есть локальных пространственных соединений существования бедности в сельских районах. Для анализа учитывались показатели касающиеся людей живущих ниже доходного критерия и использующих социальную помощь в 2009 г. и в 2013 г. на основе публикации ЦСУ Экономическая бедность в Польше. Такой критерий определяется как установленный законом порог бедности, но его измеритель не в полной мере отражает масштаб явления. Отсутствие ежегодной валоризации порогов бедности приводит к снижению концентрации этого явления в сельских районах, в то время увеличение порогов доходного критерия способствует расширению пределов существования бедности.
Źródło:
Wiadomości Statystyczne. The Polish Statistician; 2016, 10; 22-32
0043-518X
Pojawia się w:
Wiadomości Statystyczne. The Polish Statistician
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies