Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "korelacja zmiennych" wg kryterium: Wszystkie pola


Wyświetlanie 1-1 z 1
Tytuł:
New algorithm for determining the number of features for the effective sentiment-classification of text documents
Nowy algorytm ustalania liczby zmiennych potrzebnych do klasyfikacji dokumentów tekstowych ze względu na ich wydźwięk emocjonalny
Autorzy:
Idczak, Adam
Korzeniewski, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/18105028.pdf
Data publikacji:
2023-05-31
Wydawca:
Główny Urząd Statystyczny
Tematy:
sentiment analysis
document sentiment classification
text mining
logistic regression
naive Bayes classifier
feature selection
correlation
analiza sentymentu
klasyfikacja dokumentów ze względu na wydźwięk emocjonalny
eksploracja tekstu
regresja logistyczna
naiwny klasyfikator Bayesa
dobór cech
korelacja
Opis:
Sentiment analysis of text documents is a very important part of contemporary text mining. The purpose of this article is to present a new technique of text sentiment analysis which can be used with any type of a document-sentiment-classification method. The proposed technique involves feature selection independently of a classifier, which reduces the size of the feature space. Its advantages include intuitiveness and computational noncomplexity. The most important element of the proposed technique is a novel algorithm for the determination of the number of features to be selected sufficient for the effective classification. The algorithm is based on the analysis of the correlation between single features and document labels. A statistical approach, featuring a naive Bayes classifier and logistic regression, was employed to verify the usefulness of the proposed technique. They were applied to three document sets composed of 1,169 opinions of bank clients, obtained in 2020 from a Poland-based bank. The documents were written in Polish. The research demonstrated that reducing the number of terms over 10-fold by means of the proposed algorithm in most cases improves the effectiveness of classification.
Analiza sentymentu, czyli wydźwięku emocjonalnego, dokumentów tekstowych stanowi bardzo ważną część współczesnej eksploracji tekstu (ang. text mining). Celem artykułu jest przedstawienie nowej techniki analizy sentymentu tekstu, która może znaleźć zastosowanie w dowolnej metodzie klasyfikacji dokumentów ze względu na ich wydźwięk emocjonalny. Proponowana technika polega na niezależnym od klasyfikatora doborze cech, co skutkuje zmniejszeniem rozmiaru ich przestrzeni. Zaletami tej propozycji są intuicyjność i prostota obliczeniowa. Zasadniczym elementem omawianej techniki jest nowatorski algorytm ustalania liczby terminów wystarczających do efektywnej klasyfikacji, który opiera się na analizie korelacji pomiędzy pojedynczymi cechami dokumentów a ich wydźwiękiem. W celu weryfikacji przydatności proponowanej techniki zastosowano podejście statystyczne. Wykorzystano dwie metody: naiwny klasyfikator Bayesa i regresję logistyczną. Za ich pomocą zbadano trzy zbiory dokumentów składające się z 1169 opinii klientów jednego z banków działających na terenie Polski uzyskanych w 2020 r. Dokumenty zostały napisane w języku polskim. Badanie pokazało, że kilkunastokrotne zmniejszenie liczby terminów przy zastosowaniu proponowanej techniki na ogół poprawia jakość klasyfikacji.
Źródło:
Wiadomości Statystyczne. The Polish Statistician; 2023, 68, 5; 40-57
0043-518X
Pojawia się w:
Wiadomości Statystyczne. The Polish Statistician
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies