- Tytuł:
-
Zastosowania biologiczne tetrazoli i ich pochodnych
Biological applications of tetrazoles and their derivatives - Autorzy:
-
Olszewska, A.
Strzempek, W. - Powiązania:
- https://bibliotekanauki.pl/articles/172586.pdf
- Data publikacji:
- 2018
- Wydawca:
- Polskie Towarzystwo Chemiczne
- Tematy:
-
tetrazol
pochodne tetrazoli
zastosowania biologiczne
tetrazole
tetrazoles derivatives
biological applications - Opis:
- Due to the wide range of applications of tetrazoles, in recent years the number of publications and patents describing the synthesis, structural and physicochemical studies of compounds that contain tetrazole fragments in their structure has increased significantly [1]. Tetrazoles are unique compounds containing some of the most electron deficient aromatic rings so that they have one of the highest electron affinity [3]. They also have a whole range of coordination possibilities from simple monodentate ligands to complex polymer systems in which several of nitrogen atoms per tetrazole molecule are involved in the metal coordination. The presence of the metal allows a much wider application, combining the simple geometries and properties of organic compounds with the wealth of structure and properties of the metals. The discussed heterocyclic compounds are not only the most modern high energetic materials for military purposes [5], but also fungicides [6], herbicides [7], a promising component in many modern therapies [8] and drugs [11] (e.g. derivatives of indomethacin, drug for arthritis [1]). One of the most important fields in which tetrazoles and their derivatives are widely used is medicinal chemistry. Because of their high physiological activity and low toxicity, they are versatile in both biochemical and pharmaceutical applications [9]. Moreover, different compounds containing tetrazoles have antimicrobial (Fig. 1) [11, 13–17], antifungal (Fig. 2) [18–20], antiparasitic (Fig. 13–16) [34–36], antivirus (Fig. 17–19) [37–41], analgesic and anti-inflammatory (Fig. 3, 4) [17, 21–24], anti-epileptic, anticonvulsant (Fig. 10–13) [30–33], antihypertensive, antitumor (Fig. 5–9) [25–29], antidiabetic and other properties [12]. This article is a review of the selected tetrazoles and their derivatives in terms of their biological applications.
- Źródło:
-
Wiadomości Chemiczne; 2018, 72, 3-4; 207-228
0043-5104
2300-0295 - Pojawia się w:
- Wiadomości Chemiczne
- Dostawca treści:
- Biblioteka Nauki