- Tytuł:
-
Chemia bioortogonalna : nowa perspektywa dla chemii organicznej
Bioorthogonal chemistry : new perspective for organic chemistry - Autorzy:
- Miszczak, K.
- Powiązania:
- https://bibliotekanauki.pl/articles/172776.pdf
- Data publikacji:
- 2018
- Wydawca:
- Polskie Towarzystwo Chemiczne
- Tematy:
-
chemia bioortogonalna
bioortogonalna ligacja
ligacja Staudingera
1,3-dipolarna cykloaddycja
reakcja Dielsa-Aldera
bioorthogonal chemistry
bioorthogonal ligation
Staudinger ligation
1,3-dipolar cycloaddition
Diels-Alder reaction - Opis:
- This work is about bioorthogonal chemistry as a chemistry of reactions taking place in the living, in particular human, organism environment. In the search for reactions that can occur under conditions, the focus is mainly on the reactions of molecules that do not occur naturally in the body. Then, to have any application, generally for the purpose of using this reactions to locate the accumulation spotes of the selected substance, one molekule is covalently bonded to the biomarker molecule, the second binds to the indicator molecule, which is frequently fluorescein. Among a numerous examples of reactions that were designed during the short history of bioorthogonal chemistry, there are mainly reactions involving organic azides, which are not naturalny present in the human body. An example of such a reaction is the Staudinger ligation. Subsequent modifications include mainly the 1,3-dipolar addition of azides to alkynes, catalyzed by copper(I) ions. The instability and toxicity of this catalyst has forced further innovations in bioorthogonal reactions. One of them is the use of alkynes with high angular stress, which causes a significant reduction in the activation energy of the process, that it is unnecessary to use a catalyst. Another example of the bioorthogonal reactions are Diels-Alder reactions. The interest in these reactions is not diminishing for several reasons. One of them is the fact that as a result of a simple reaction two new carbon-carbon bonds (or others, for the HDA reaction) occur. Furthermore, many of these reactions occur at standard temperature, without additional heating. Moreover, the possibility of numerous modifications of the skeleton and functional groups and the substituents of dienes and dienophils facilitates carrying out these reactions in the aquatic environment. At the end, the article presents examples of the application of cyclooaddition reactions in bioorthogonal chemistry.
- Źródło:
-
Wiadomości Chemiczne; 2018, 72, 9-10; 703-722
0043-5104
2300-0295 - Pojawia się w:
- Wiadomości Chemiczne
- Dostawca treści:
- Biblioteka Nauki