Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ciecze" wg kryterium: Temat


Wyświetlanie 1-9 z 9
Tytuł:
Aminokwasowe ciecze jonowe
Amino acid ionic liquids
Autorzy:
Samaszko-Fiertek, Justyna
Sowińska, Kamila
Dmochowska, Barbara
Ślusarz, Rafał
Madaj, Janusz
Powiązania:
https://bibliotekanauki.pl/articles/972296.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
ciecze jonowe
cholinowe ciecze jonowe
aminokwasowe ciecze jonowe
ionic liquids
choline ionic liquids
amino acid ionic liquids
Opis:
Ionic liquids (IL) are defined as compounds consisting only of ions with a melting point below 100°C. [1,2,4]. The first obtained ionic liquid was ethylammonium nitrate synthesized in 1914 by Paul Walden as a result of the protonation of ethylamine with nitric acid [4]. New group of IL are amino acid ionic liquids. They are non-toxic and bio- renewable ionic liquids of natural origin. The amino acids contain at least two functional groups, an amino group and a carboxyl group, which makes them both cationic and anionic in the amino acid ionic liquid. Amino acid ionic liquids attract more and more attention in the field of catalysis, as solvents in chemical transformations and cellulose solvents due to low production costs and their biodegradable. Compounds based on imidazolium, phosphonium, ammonium and choline ionic liquids found a wide application in biological sciences, modern chemistry and materials science [10]. One of their biggest advantages is the ability to absorb CO2 (especially their amino acid derivatives), which increases the chance of eliminating carbon dioxide from the environment. Amino acid ionic liquids have also found application in the field of catalysis.
Źródło:
Wiadomości Chemiczne; 2019, 73, 11-12; 737-751
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reakcje utleniania wybranych grup funkcyjnych z wykorzystaniem oxone® jako źródła tlenu cząsteczkowego
The oxidation reactions of selected functional groups using oxone® as a source of molecular oxygen
Autorzy:
Zawadzki, P.
Czardybon, W.
Chrobok, A.
Powiązania:
https://bibliotekanauki.pl/articles/172053.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
oxone
ciecze jonowe
reakcja utleniania
epoksyd
ionic liquids
oxidation reaction
epoxide
Opis:
Oxidation reactions belong to the group of the most commonly used processes in both organic and inorganic chemistry. The main issues in such transformation are usually safe handling of the oxidants as well as waste generation. Peroxymonosulfuric acid is one of the strongest oxidants. It was described for the first time in 1898 by Heinrich Caro. Nowadays, the commercial sources of KHSO5 are low-cost industrial bulk chemicals, e.g., the triple salt Oxone® (2KHSO5· KHSO4·K2SO4). These products are stable oxidizing agents commonly used in fine chemicals synthesis, and are easy to handle, non-toxic as well as generate non-polluting by-products. Over the past several years the scope of its use has extended. One of the most important transformation that have been made possible with the use of Oxone® are epoxidation and ketone formation. Epoxides and ketones are important synthetic building blocks widely used in the chemical industry for the production of pharmaceutical products, flavours, fragrances, resins, adhesives and paints. The use of Oxone® was demonstrated in several combinations both in classical methods that involved metal catalysis as well as in novel approaches with the use of microwaves and ionic liquids. Over the past 20 years, ionic liquids, together with supercritical fluids and water, have become powerful alternatives to conventional organic solvents. Ionic liquids are salts having in the structure an organic cation and an inorganic or organic anion, with a melting point below 100°C. The advantage of using ionic liquids is a big variety of available structures. Combinations of both ionic liquids and Oxone® offer an interesting alternative to classical oxidation methods used in industry.
Źródło:
Wiadomości Chemiczne; 2016, 70, 5-6; 289-297
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Adsorbenty ze związanymi cieczami jonowymi i ich wykorzystanie w przygotowaniu próbek oligonukleotydów
Adsorbents with bonded ionic liquids and their use in the preparation of oligonucleotides samples
Autorzy:
Nuckowski, Łukasz
Zalesińska, Ewa
Studzińska, Sylwia
Powiązania:
https://bibliotekanauki.pl/articles/172150.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
przygotowanie próbek
oligonukleotydy
ciecze jonowe
adsorbenty
sample preparation
oligonucleotides
ionic liquids
adsorbents
Opis:
Oligonucleotides are short fragments of nucleic acids. They have a growing potential in medicine, especially as diagnostic and therapeutic agents. In most cases, these compounds are determined in the complex biological matrix. Thus, the sample preparation step is very important in their bioanalysis. Solid-phase extraction is a predominant technique in this field. However, presently used for this purpose adsorbents have disadvantages. They ensure low extraction effectiveness and procedures using them are labor-intensive or time-consuming. Ionic liquids, since their discovery, are objects of intensive interest of scientists. Their scientific attractiveness is connected with their unique properties. They are used in separation and sample preparation techniques, such as liquid-liquid extraction using water-immiscible ionic liquids. This approach was also used in the extraction of oligonucleotides. Adsorbents modified with ionic-liquids have growing potential in extraction techniques. Few types of materials are used, namely carbon, polymers, and silica. A common feature of these materials modified with ionic liquids is the ion exchange character. Nonetheless, carbon nanomaterials are coated or covalently modified with ionic liquids, and they are used mainly for nonpolar compounds. Polymer and silica-based adsorbents are used mainly for acidic compounds. Polymers are characterized by the highest stability of the presented materials. Due to their ion-exchange properties crosslinked poly(ionic liquids) were used also for extraction of unmodified and modified oligonucleotides. The optimized procedure applying the material with bonded zwitterion ionic liquid gives high recoveries. It is concurrent for presently used adsorbents, thus solves problems connected with their usage. Moreover, it can be used for biological samples without any pre-purification.
Źródło:
Wiadomości Chemiczne; 2020, 74, 7-8; 545-565
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hydroformylacja w środowisku cieczy jonowych
Hydroformylation in ionic liquids medium
Autorzy:
Trzeciak, A.M.
Powiązania:
https://bibliotekanauki.pl/articles/172009.pdf
Data publikacji:
2011
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
kataliza
hydroformylacja
ciecze jonowe
karbeny N-heterocykliczne
catalysis
hydroformylation
ionic liquids
rhodium
N-heterocyclic carbenes
Opis:
The hydroformylation reaction was discovered by Otto Roelen in 1938. He studied the side processes occurring during the Fischer-Tropsch synthesis with a cobalt catalyst and found some amounts of aldehydes formed from the olefin and syngas (H2/CO) [1]. The hydroformylation found application in the chemical industry, mainly for production of n-butanal from propene. Aldehydes obtained by propene hydroformylation are subsequently hydrogenated to alcohols, used as solvents. Butanal can also be condensed to C8 aldehydes and alcohols, 2-ethylhex-2-enal and 2-ethylhexanol, important components for plasticizers such as dioctylphtalate. The hydroformylation reaction can be applied not only for the synthesis of aldehydes but also for other products. In particular, successful synthesis of quaternary carbon centers by hydroformylation has been reported in which the rhodium catalyst was modified with a ligand that serves as a catalytic directing group by covalently and reversibly binding to both the substrate and the catalyst. Ionic liquids have been recognized as a novel class of solvents which can be successfully used for homogeneous catalysis [4]. Application of ionic liquids, non-aqueous and non-volatile solvents, has made it possible to construct biphasic systems in order to efficiently separate catalysts from organic products. It is also important that the properties of ionic liquids, such as solubility, acidity, or coordination ability, can be tuned by the use of different cations and anions. In the ideal case, the ionic liquid is able to dissolve the catalyst and displays partial miscibility with the substrate. If the products have negligible miscibility in the ionic liquid, they can be removed by simple decantation, without extracting the catalyst. If the products are partially or totally miscible in the ionic liquid, separation of the products is more complicated [4e, 4h]. The main problem with catalytic systems for hydroformylation containing ionic liquid phase was a significant leaching of the catalyst out of the ionic liquid phase, which can be overcome by modifying neutral phosphane with ionic groups. Examples of such systems are presented in the article. It was revealed that N-heterocyclic carbenes were formed in the biphasic hydroformylation reactions promoted by Rh complexes in an imidazolium ionic liquid [10]. Consequently, reactivity of the in situ formed Rh-carbene complexes can strongly influence on the hydroformylation reaction course [11]. The best methodology to perform the hydroformylation reaction would be a flow system in which the catalyst remains in the reactor and the substrates and products flow continuously into and out of the reactor. For the construction of such a system with soluble rhodium catalysts, ionic liquids could be considered as media used for the immobilization of the catalyst. The first example of continuous flow hydroformylation was reported by Cole-Hamilton [19, 20]. Different Supported Ionic Liquid Phase (SILP) catalysts have been examined in hydroformylation [15–17]. Interestingly, the neutral ligand can be applied efficiently in a continuous gas-phase SILP process, while in a typical biphasic system containing ionic liquid and organic solvent it would leach into the product phase.
Źródło:
Wiadomości Chemiczne; 2011, 65, 11-12; 1003-1020
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kataliza procesów hydrosililowania z udziałem cieczy jonowych
Catalysis of hydrosilylation processes with the participation of ionic liquids
Autorzy:
Bartlewicz, Olga
Szymańska, Anna
Jankowska-Wajda, Magdalena
Dąbek, Izabela
Maciejewski, Hieronim
Powiązania:
https://bibliotekanauki.pl/articles/1413312.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
hydrosililowanie
kompleksy Rh
kompleksy Pt
ciecze jonowe
SILPC
kataliza heterogeniczna
hydrosilylation
Rh complexes
Pt complexes
ionic liquids
heterogeneous catalysis
Opis:
Hydrosilylation is a fundamental and elegant method for the laboratory and industrial synthesis of organosilicon compounds. The hydrosilylation reaction is usually performed in a single-phase homogeneous system. A major problem, particularly in homogeneous catalysis, is the separation of catalyst from the reaction mixture. The presence of metals in the reaction products, even in trace quantities, is unacceptable for many applications, therefore efforts have been made at applying heterogeneous catalysts or immobilised metal complexes in order to obtain high catalytic activity and easy product isolation at the same time. One of the methods for producing such catalysts is the employment of ionic liquids as agents for the immobilization of metal complexes. Biphasic catalysis in a liquid-liquid system is an ideal approach through which to combine the advantages of both homogeneous and heterogeneous catalysis. The ionic liquids (ILs) generally form the phase in which the catalyst is dissolved and immobilized. In our research we have obtained a number of catalytic systems of such a type which were based on rhodium and platinum complexes dissolved in phosphonium, imidazolium, pyridinium and ammonium liquids. Currently, there has a common trend to obtain heterogenized systems that combine advantages of homogeneous and heterogeneous catalysis, which makes the hydrosilylation process more cost- effective. Such integration of homo- and heterogeneous catalysts is realized in several variants, as supported IL phase catalysts (SILPC) and solid catalysts with ILs layer (SCILL). Although all the above systems show high catalytic activities, their structure is unknown. This is why we have made attempts to modify selected ionic liquids (corresponding to our most effective systems) and we have applied them as ligands in the synthesis of platinum and rhodium complexes. Another group of catalysts comprises anionic complexes of rhodium and platinum which were obtained by reactions between halide complexes of metals and a respective ionic liquid. Most of the obtained complexes are solids insoluble in hydrosilylation reagents and are characterized by a high catalytic activity. A considerable development of heterogeneous catalysts of this type and their application in many hydrosilylation processes can be expected in the future. This mini-review briefly describes the recent progress in the design and development of catalysts based on the presence of ionic liquids and their applications for hydrosilylation processes.
Źródło:
Wiadomości Chemiczne; 2021, 75, 1-2; 5-29
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ciecze jonowe oraz potencjalne obszary ich zastosowań w przemyśle chemicznym
Ionic liquids and potential areas of their applications in chemical industry
Autorzy:
Borowiecki, P.
Bretner, M.
Plenkiewicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/172141.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
ciecze jonowe
ILs
właściwości ILs
zastosowania ILs
perspektywy ILs
ionic liquids
properties of ILs
applications of ILs
prospects of ILs
Opis:
Ionic liquids (ILs) compose a group of chemical compounds of ionic nature consisting of organic cation and inorganic or organic anion, whose melting point does not exceed 100°C (373,15 K). These compounds play a very important role in scientific investigations as well as in industrial organic synthesis, both in high‑ -tonnage productions as well as low-tonnage technologies of high added-value chemicals and materials. Ionic liquids are mostly used as alternative media and/or catalysts for desired chemical reactions. Multifunctionality and popularity of ionic liquids applications mainly stems from their beneficial physicochemical properties, such as: (i) very low vapor pressure, (ii) negligible viscosity, (iii) high overall- and thermal-stability, (iv) incombustibility and non-explosiveness, (v) high heat capacity, (vi) good solubility of most organic compounds (including polymers) as well as organometallic and inorganic compounds (including gases), (vii) low compressibility, and (viii) high electrochemical conductivity. Moreover, ionic liquids (x) exist in liquid state in a very wide range of temperature, (xi) exhibit a wide range of electrochemical stability as well as (xii) improve properties of enzymes and other biocatalysts, positively impacting on their activity, stability, enantioselectivity and/or stereoselectivity. It is worth noting that ionic liquids increasingly constitute a target products of defined commercial characteristics, such in the case of: electrochemicals, chemo-therapeutics, environmental anti-degradation agents, effective and safe agrochemicals etc. In this review, with 238 refs., development trends and potential applications of ionic liquids is presented.
Źródło:
Wiadomości Chemiczne; 2015, 69, 3-4; 271-296
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Współczesne surfaktanty i ich struktury micelarne tworzone w roztworach wodnych
Currently available surfactants and their micellar structures formed in aqueous solutions
Autorzy:
Jakubowska, A.
Powiązania:
https://bibliotekanauki.pl/articles/172031.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
surfaktanty
ciecze jonowe
surfaktanty funkcjonalizowane surfaktanty polimerowe
techniki pomiarowe
struktury micelarne
surfactants
ionic liquids
functionalized surfactants
polymeric surfactants
measurement techniques
micellar structures
Opis:
This article presents currently available surfactant ionic liquids as well as functionalized and polymeric surfactants. Ionic liquids (ILs) are organic salts of melting points below 100°C. They have attracted much attention due to their unique physicochemical properties such as low volatility, high thermal stability, low toxicity, high ionic conductivity, capacity to dissolve organic, inorganic and polymeric materials [1]. ILs can be used as “green” solvents in electrochemistry, extraction, chromatography, catalysis, chemical and enzymatic reactions, and synthesis of new materials [2–4]. Ionic liquids are less corrosive than classical molten salts and therefore are used as electrolytes in batteries or solar cells [5]. Like other salts, ionic liquids are formed by ions but at least one of them is an organic ion. Moreover cations and anions differ significantly in their geometrical characteristics [1]. ILs with long alkyl chains and pronounced hydrophilic and lipophilic molecular fragments have an obvious amphiphilic nature and are called the surface active ionic liquids, SAILs, because they show combined properties of ILs and surfactants [6]. Recently, there is ever-increasing interest in SAILs based on gemini surfactants (Figs 6 and 7 [21, 22]), dodecyl sulfate, DS (Fig. 8a) and aerosol-OT, AOT (Fig. 8b) anions [23–25], alkylpyridinium (Fig. 1b [11]), imidazolium (Figs 1a and 3 [13, 14, 16]), alkylpyrrolidinium [17, 18], and diisopropylethylammonium, DIPEA [19] cations. Apart from SAILs, in recent years an attention has also been paid to functionalized surfactants such as: bolaform surfactants [32], supra-long chain surfactants [35, 36], calixarene-based surfactants (Fig. 9 [33]). Surfactants of the above types of SAILs and functionalized surfactants have been synthesized and their micellar structures formed in water have been studied. For example, very interesting vesicle systems were observed in aqueous solutions of diisopropylethylamine alkyl carboxylates, [DIPEA]+[CnH2n+1COO]–, for n = 3–9 (Fig. 5 [19]) and in aqueous solutions of the surfactant mixture composed of N-dodecyl-N-methyl-pyrrolidinium and sodium dodecyl sulfate (Fig. 4 [18]). It was found that 1-hexadecyl-3-methyl-imidazolium chloride in aqueous solutions underwent the phase (micellar) transformations upon cooling (Fig. 2 [13]). An important group of polymeric surfactants attracting a great interest in literature is that of triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), often abbreviated as [EO]a-[PO]b-[EO]a. Recently, these copolymers, also called poloxamers, have been proposed for pharmaceutical use [37–40]. These nonionic surfactants form micelles in aqueous solutions with a core containing the hydrophobic PO blocks and a shell made up of the hydrated EO blocks [41]. The subject of current studies include: the interactions between poloxamers and anionic surfactant, SDS in aqueous solutions [ 42–47], micellization of poloxamers in mixtures of water and organic solvents [48], comparison of association properties of diblock and triblock copolymers [49]. The paper also presents the experimental methods used recently to study surface activity, aggregation behaviors, and micellar structures of surfactants in water.
Źródło:
Wiadomości Chemiczne; 2013, 67, 11-12; 981-1001
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie cieczy jonowych jako modyfikatorów fazy ruchomej w chromatografii cieczowej
Application of ionic liquids as mobile phase modifiers in liquid chromatorgaphy
Autorzy:
Kilanowska, Anna
Zielak, Judyta
Studzińska, Sylwia
Powiązania:
https://bibliotekanauki.pl/articles/172012.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
ciecze jonowe
chromatografia cieczowa
blokowanie wolnych silanoli
chromatografia par jonowych
oligonukleotydy antysensowne
ionic liquids
liquid chromatography
free silanol suppressors
ion pair chromatography
antisense oligonucleotides
Opis:
Ionic liquids are molten salts composed of large, asymmetric, organic cations (e.g. imidazolium or piperidine) and inorganic anions such as e.g chloride or fluoroborate. These compounds are characterized by low melting point, below 1000C, however, they also have other interesting properties including high thermal stability, minor vapor pressure or negligible volatility. Moreover, by the appropriate selection of the cation and anion building the ionic liquid, it is possible to obtain the desired physicochemical properties of these salts. For this reason, ionic liquids are applied to the synthesis, catalysis, electrochemical methods, extraction methods, etc. Application of these compounds in separation techniques merits special attention, especially considering liquid chromatography. Ionic liquids are commonly used in this technique as free silanols suppressors, especially regarding the analysis of basic compounds. Moreover, the excess amount of ionic liquids ions may adsorb on the hydrophobic ligands present at the stationary phase surface, which also plays a significant role in the retention of analytes. Besides their application as silanols suppressors, these compounds were also used as ion pair reagents in the analysis of antisense oligonucleotides, which are short nucleic acid fragments with therapeutic potential due to the ability to bind with complementary sequences of ribonucleic acid. For this reason, antisense oligonucleotides are used in the treatment of several diseases. This article briefly presents structures, properties and the application of ionic liquids as mobile phase modifiers for the analysis of the wide range of different analytes using liquid chromatography. Moreover, a part of this paper was devoted to the analysis of antisense oligonucleotides with the use of the different chromatographic techniques, including the application of ionic liquids as mobile phase additives in ion pair chromatography.
Źródło:
Wiadomości Chemiczne; 2020, 74, 7-8; 507-525
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie zielonych rozpuszczalników w syntezie nienasyconych związków boro- i krzemoorganicznych na drodze reakcji hydrometalacji i sprzęgania Marcińca
Application of green solvents in the synthesis of unsaturated organoboron and organosilicon compounds via catalytic hydrosilylation and Marciniec coupling reactions
Autorzy:
Walkowiak, Jędrzej
Powiązania:
https://bibliotekanauki.pl/articles/1413280.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
hydrometalacja
reakcja sprzęgania
CO2 w stanie nadkrytycznym
ciecze jonowe
poli(glikol etylenowy)
PEG
kataliza homogeniczna
hydrometallation
coupling reaction
supercritical CO2
ionic liquids
poly(ethylene glycol)
homogeneous catalysis
Opis:
Unsaturated organoboron and organosilicon compounds constitute an important class of organometallic compounds, which due to the presence of silyl- or boryl- group attached to Csp2 atoms, their simple and straightforward transformations in coupling and demetallation reactions, found a broad range of applications in the synthesis of fine chemicals or new materials with tailored properties. Such compounds might be synthesized in many transformations but two of them: hydrometallation and Marciniec coupling reactions permitted to obtain compounds with high effectivity, selectivity, and in the case of hydrometallation reactions with excellent atom economy. Most of these processes occur in a homogeneous phase, which ensures excellent yields and stereo- and regioselectivity. On the other hand, such conditions generate problems with catalyst reuse, product separation, and substantial consumption of toxic, volatile organic solvents. According to the assumptions of sustainable development in chemistry, the new procedures, which allow to intensify the process in terms of its efficiency, according to green chemistry rules are of prior importance in modern chemical industry. In this manuscript, the newest achievements in the application of green solvents (ionic liquids, liquid polymers, and supercritical CO2) in catalytic hydrometallation of alkynes and coupling of vinylmetalloids with olefins are discussed. Such an approach builds a new strategy for effective catalyst immobilization and its reuse, the increase of process productivity by the application of repetitive batch processes, and elimination of organic solvents, typically used in these transformations. Selected contributions in this field of chemistry are presented within this review.
Źródło:
Wiadomości Chemiczne; 2021, 75, 1-2; 111-136
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies