Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "x-vectors" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Voice pathology assessment using x-vectors approach
Autorzy:
Kotarba, Katarzyna
Kotarba, Michał
Powiązania:
https://bibliotekanauki.pl/articles/2146638.pdf
Data publikacji:
2021
Wydawca:
Politechnika Poznańska. Instytut Mechaniki Stosowanej
Tematy:
x-vectors
speaker embeddings
voice pathology
MFCC
GFCC
x wektory
osadzenie głośnika
patologia głosu
Opis:
Voice pathology assessment using sustained vowels has proven to be effective and reliable. However, only a few studies regarding detection of pathological speech based on continuous speech are available. In this study we evaluate the usefulness of various regression models trained on continuous speech recordings from Saarbruecken Voice Database in the detection of voice pathologies. The recordings were used for extraction of speaker embeddings called x-vectors based on mel-frequency cepstral coefficients and gammatone frequency cepstral coefficients. Since the dataset used in this study is imbalanced, various over- and undersampling techniques were applied to the training set to ensure robustness of models’ decision boundaries. The models were trained on both imbalanced and resampled training sets using 5-fold cross-validation. The best results were obtained for Multi Layer Perceptron trained on GFCC-based x-vectors, achieving accuracy of 0.8184, F1-score of 0.8212, and ROC AUC score of 0.8810 for the testing set.
Źródło:
Vibrations in Physical Systems; 2021, 32, 1; art. no. 2021108
0860-6897
Pojawia się w:
Vibrations in Physical Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
GFCC-based x-vectors for Reinke’s edema detection
Autorzy:
Kotarba, Katarzyna
Powiązania:
https://bibliotekanauki.pl/articles/24202003.pdf
Data publikacji:
2022
Wydawca:
Politechnika Poznańska. Instytut Mechaniki Stosowanej
Tematy:
x-vectors
Reinke’s edema
voice pathology classification
x wektory
obrzęk Reinkego
klasyfikacja patologii głosu
Opis:
Automatic assessment of voice disorders is one of the most important applications of speech signal analysis. Various algorithms utilizing both sustained vowels and continuous speech have been successfully used to perform detection of many voice pathologies, e.g. dysphonia, laryngitis, and vocal folds paralysis. However, algorithms described in literature used for classification of Reinke’s edema - one of the most severe smoking-induced voice conditions - are scarce and rely mostly on speech signals containing sustained vowels. In this paper, a method incorporating gammatone frequency cepstral coefficients (GFCC) based x-vectors extracted from continuous speech is presented. The extracted x-vectors are used to train a SGD classifier performing Reinke’s edema detection. For validation folds, the proposed method yielded AUC ROC, accuracy, recall, and specificity of 0.96 (±0.03), 0.94 (±0.02), 0.92 (±0.03), and 0.94 (±0.02), respectively. For testing set, the method yielded AUC ROC, accuracy, recall, and specificity of 0.98, 0.89, 0.88, and 0.89, respectively.
Źródło:
Vibrations in Physical Systems; 2022, 33, 3; art. no. 2022307
0860-6897
Pojawia się w:
Vibrations in Physical Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies