Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Unmanned Surface Vessel" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Shoreline extraction based on LiDAR data obtained using an USV
Autorzy:
Halicki, A.
Specht, M.
Stateczny, A.
Specht, C.
Lewicka, O.
Powiązania:
https://bibliotekanauki.pl/articles/24201469.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
shoreline
LiDAR
laser scanning
Unmanned Surface Vessel
unmanned vehicles
hydrography
geodesy
Opis:
This article explores the use of Light Detection And Ranging (LiDAR) derived point clouds to extract the shoreline of the Lake Kłodno (Poland), based on their geometry properties. The data collection was performed using the Velodyne VLP-16 laser scanner, which was mounted on the HydroDron Unmanned Surface Vehicle (USV). A modified version of the shoreline extraction method proposed by Xu et al. was employed, comprising of the following steps: (1) classifying the point cloud using the Euclidean cluster extraction with a tolerance parameter of 1 m and min. cluster size of 10,000 points, (2) further filtration of boundary points by removing those with height above 1 m from the measured elevation of water surface, (3) manual determination of a curve consisting of 5 points located along the entire shoreline extraction region at a relatively constant distant from the coast, (4) removal of points that are further from the curve than the average distance, repeated twice. The method was tested on the scanned section of the lake shoreline for which Ground Control Points (GCP) were measured using a Global Navigation Satellite System (GNSS) Real Time Kinematic (RTK) receiver. Then, the results were compared to the ground truth data, obtaining an average position error of 2.12 m with a standard deviation of 1.11 m. The max error was 5.54 m, while the min. error was 0.41 m, all calculated on 281 extracted shoreline points. Despite the limitations of this parametric, semi-supervised approach, those preliminary results demonstrate the potential for accurate shoreline extraction based on LiDAR data obtained using an USV. Further testing and optimisation of this method for larger scale and better generalisation for different waterbodies are necessary to fully assess its effectiveness and feasibility. In this context, it is essential to develop computationally efficient methods for approximating shorelines that can accurately determine their course based on a set of points.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2023, 17, 2; 445--453
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Human Element and Autonomous Ships
Autorzy:
Ahvenjärvi, S.
Powiązania:
https://bibliotekanauki.pl/articles/115965.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
human element
autonomous ship
unmanned ship
future of navigation
unmanned surface vessel (USV)
remote control
Human Machine Interface (HMI)
MUNIN project
Opis:
The autonomous ship technology has become a “hot” topic in the discussion about more efficient, environmentally friendly and safer sea transportation solutions. The time is becoming mature for the introduction of commercially sensible solutions for unmanned and fully autonomous cargo and passenger ships. Safety will be the most interesting and important aspect in this development. The utilization of the autonomous ship technology will have many effects on the safety, both positive and negative. It has been announced that the goal is to make the safety of an unmanned ship better that the safety of a manned ship. However, it must be understood that the human element will still be present when fully unmanned ships are being used. The shore-based control of a ship contains new safety aspects and an interesting question will be the interaction of manned and unmanned ships in the same traffic area. The autonomous ship technology should therefore be taken into account on the training of seafarers. Also it should not be forgotten that every single control algorithm and rule of the internal decision making logic of the autonomously navigating ship has been designed and coded by a human software engineer. Thus the human element is present also in this point of the lifetime navigation system of the autonomous ship.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2016, 10, 3; 517-521
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modeling of performance of a AUV vehicle towards limiting the hydro-acoustic field
Autorzy:
Gerigk, M. K.
Powiązania:
https://bibliotekanauki.pl/articles/117327.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Autonomous Underwater Vessel (AUV)
Autonomous Underwater Vehicle (AUV)
Unmanned Underwater Vehicle (UUV)
Unmanned Surface Vehicle (USV)
AUV stealth vehicle
hydroacoustics
hydroacoustic field
sonar
Opis:
Some results of research devoted to the modeling of a AUV-Stealth vehicle performance towards limiting its hydro-acoustic field are presented in the paper. At the beginning the AUV-Stealth autonomous underwater vehicle concept is described. Then the method of research is introduced. Next the key design drivers of the AUV-Stealth vehicle are presented. Between them are the AUV-Stealth hull form, arrangement of internal spaces, materials, hull covers, energy supply and propulsion system, etc. Some results of the hydrodynamic and stealth characteristics of the AUV-Stealth vehicle are briefly described. It is presented in the paper that the hull form, construction materials including the covers may affect the AUV-Stealth vehicle boundary layer and wake. This may create some problems of identification of the AUV-Stealth vehicle using a sonar or hydrophone. The final conclusions are presented.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2018, 12, 4; 687-692
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Merging conventionally navigating ships and MASS - Merging VTS, FOC and SCC?
Autorzy:
Baldauf, M.
Fischer, S.
Kitada, M.
Mehdi, R. A.
Al-Quhali, M. A.
Fiorini, M.
Powiązania:
https://bibliotekanauki.pl/articles/117306.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Maritime Autonomous Surface Ships (MASS)
Vessel Traffic Service (VTS)
e-Navigation
fleet operation centre (FOC)
International Maritime Organization (IMO)
ship control centre (SCC)
unmanned shipping
unmanned ship
Opis:
Current maritime transportation and shipping is characterized by rapid technological developments effecting the basic concepts of operating ships and even changing traditional paradigms of controlling ships. The e-Navigation concept of the International Maritime Organization (IMO) specifically aims at more comprehensive and reliable support of the human operators on-board and ashore. However, autonomous unmanned ships remote controlled or even autonomously navigating are expected to come soon. In this paper, selected operational aspects of maritime traffic merging conventional and unmanned remote controlled ships in coastal areas are discussed. Furthermore, some preliminary results of experimental simulation studies into a future scenario of maritime traffic are presented and preliminary conclusions in respect to job profiling and training requirements are discussed.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2019, 13, 3; 495-501
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies