Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "remote sensing image" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Wykorzystanie obrazów hiperspektralnych do klasyfikacji pokrycia terenu zlewni Bystrzanki
Using hyperspectral images for land cover classification in Bystrzanka basin
Autorzy:
Olesiuk, D.
Zagajewski, B.
Powiązania:
https://bibliotekanauki.pl/articles/132305.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
teledetekcja
zlewnia rzeki
obraz hiperspektralny
pokrycie terenu
river basin
hyperspectral image
land cover
remote sensing
Źródło:
Teledetekcja Środowiska; 2008, 40; 125-148
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja zorientowana obiektowo w inwentaryzacji obiektów Zielonej Infrastruktury na przykładzie dzielnicy Ursynów w Warszawie
Object-oriented classification in the inventory of Green Infrastructure objects on the example of the Ursynów district in Warsaw
Autorzy:
Pyra, M.
Adamczyk, J.
Powiązania:
https://bibliotekanauki.pl/articles/132279.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
teledetekcja
klasyfikacja obiektowa
zielona infrastruktura
planowanie przestrzenne
remote sensing
Geographic Object-Based Image Analysis
green infrastructure
spatial management
Opis:
Zielona Infrastruktura jest koncepcją zintegrowanego podejścia do funkcjonalnego i przestrzennie powiązanego planowania obszarów zurbanizowanych wraz z ochroną elementów środowiska, która na przestrzeni ostatnich lat została doceniona przez podmioty odpowiedzialne za planowanie przestrzenne. Niniejsza praca przedstawia możliwości wykorzystania przetworzeń zobrazowań satelitarnych metodami klasyfikacji obiektowej w inwentaryzacji, planowaniu i monitorowaniu obiektów Zielonej Infrastruktury. Do tego celu wykorzystano zobrazowanie satelitarne pozyskane przez satelitę Pleiades w maju 2012 roku, reprezentujące obszar części dzielnicy Ursynów m.st. Warszawy. Wykorzystane w pracy metody klasyfikacji obiektowej wykazały wysoką efektywność w realizacji założonych zadań.
Green Infrastructure is a conception of an integrated approach to functional and spatially related planning of urban areas, along with environmental protection, which in recent years has been appreciated by spatial planning specialists. This study presents the capabilities of using satellite image processing with Geographic Object-Based Image Analysis methods in the inventory, planning and monitoring of Green Infrastructure objects. For this purpose, a satellite image acquired by the Pleiades satellite in May 2012, representing the area of a part of the Ursynów district of the capital city of Warsaw, was used. The object-oriented classification methods used in this work showed high effectiveness in the implementation of the tasks defined.
Źródło:
Teledetekcja Środowiska; 2018, 59; 29-49
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of efficiency of extraction of built-up areas in aerial images using fractal analysis and morphological granulometry
Porównanie efektywności wyodrębniania terenów zabudowanych na obrazach lotniczych przy pomocy analizy fraktalnej i granulometrii morfologicznej
Autorzy:
Kupidura, P.
Popławski, W.
Sitko, P.
Powiązania:
https://bibliotekanauki.pl/articles/132365.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
remote sensing
mathematical morphology
fractal analysis
classification
digital image processing
teledetekcja
morfologia matematyczna
analiza fraktalna
klasyfikacja
cyfrowe przetwarzanie obrazów
Opis:
The paper presents a comparison of results of the automatic extraction of built-up areas, based on fractal analysis and granulometric maps, in the aerial images. Built-up areas as a land-use class can be clearly seen in an aerial or satellite image, due to its high granularity, but for the same reason they are very difficult to extract using a “traditional” non-contextual, pixel-based classification. Both approaches presented in the paper, using fractal analysis and morphological granulometry, base generally on a pixel-based classification, but performed on images reviously processed using these two types of processes. Fractal analysis consists in an empirical computing of fractal dimension of parts of an image, using a box-counting method. Such an approach generates an image where pixel values are equal to a fractal dimension values of their neighbourhood. Since we can interpret a fractal dimension as a level of granularity, a simple reclassification of such an image can improve a performance of an automatic extraction of built-up area effectively. The approach based on a morphological granulometry creates a number of granulometric maps – images where pixel values mean an amount of objects of certain size in a set neighbouring fragment of an image. This way a number of these images can be processed using a pixel-based classification, to perform an effective extraction of built-up areas in an image. The results of the presented approaches have been compared to the reference mask obtained basing on a visual interpretation of the image.
Źródło:
Teledetekcja Środowiska; 2015, 52; 29-37
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja pokrycia terenu z wykorzystaniem obrazów Sentinel-2A przetworzonych za pomocą metody głównych składowych (PCA)
Land cover classification using Sentinel-2A images processed by the principal components method (PCA)
Autorzy:
Kałużna, Urszula
Będkowski, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/2058371.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
teledetekcja
pokrycie terenu
EGiB
Sentinel-2A
PCA
nadzorowana klasyfikacja obrazu
remote sensing
land cover
Land and Buildings Register
supervised image classification
Opis:
Celem badań jest ocena możliwości realizacji klasyfikacji nadzorowanej z wykorzystaniem obrazów (komponentów) uzyskiwanych w wyniku przetworzenia oryginalnych obrazów Sentinel-2A za pomocą metody głównych składowych (PCA). Klasyfikację wykonano w ośmiu wariantach, z wykorzystaniem algorytmów najmniejszej odległości (MD, Minimum Distance) oraz największego prawdopodobieństwa (ML, Maximum Likelihood), przy czym zastosowano oryginalne kanały 2, 3, 4, 8 Sentinel-2A oraz różną liczbę komponentów. Wyniki klasyfikacji oceniono poprzez porównanie z danymi o pokryciu terenu według Ewidencji Gruntów i Budynków (EGiB). Przeprowadzenie klasyfikacji na ograniczonej do dwóch liczbie komponentów uzyskanych w procedurze PCA tylko nieznacznie zmieniło wyniki w porównaniu do klasyfikacji na oryginalnych, nieprzetworzonych kanałach Sentinel-2A. Najbardziej zbliżone do danych EGiB rezultaty uzyskano stosując klasyfikację ML kanałów oryginalnych, nieprzetworzonych lub używając wszystkich komponentów PCA. Podjęta próba porównania pokrycia terenu ustalonego za pomocą klasyfikacji obrazów satelitarnych z klasami pokrycia, które zostały wyodrębnione z mapy EGiB wykazała, że przetworzenie mapy z postaci wektorowej na rastrową wpływa istotnie na uzyskiwane wyniki.
The aim of the research is to assess the feasibility of supervised classification using images (components) obtained through processing the original Sentinel-2A images by means of the principal component method (PCA). The classification was performed in eight variants, using the algorithms of the minimum distance (MD) and the maximum likelihood (ML), with the original channels 2, 3, 4, 8 of Sentinel-2A and a various number of components. The results of the classification were assessed by comparing them to the land coverage data of Land and Buildings Register (Ewidencja Gruntów i Budynków – EGiB). Performing the classification on a number of PCA components limited to two only slightly altered the results compared to the classification on the original, raw Sentinel-2A channels. The results most similar to the EGiB data were obtained using the ML classification of the original channels, i.e. raw channels or using all PCA components. The attempt to compare the land coverage established by the classification of satellite images to the coverage classes that were extracted from the EGiB map revealed that processing the map from vector to raster form significantly influences the obtained results.
Źródło:
Teledetekcja Środowiska; 2020, 61; 19-37
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies