Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "klasyfikacja obiektów" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Klasyfikacja zorientowana obiektowo w inwentaryzacji obiektów Zielonej Infrastruktury na przykładzie dzielnicy Ursynów w Warszawie
Object-oriented classification in the inventory of Green Infrastructure objects on the example of the Ursynów district in Warsaw
Autorzy:
Pyra, M.
Adamczyk, J.
Powiązania:
https://bibliotekanauki.pl/articles/132279.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
teledetekcja
klasyfikacja obiektowa
zielona infrastruktura
planowanie przestrzenne
remote sensing
Geographic Object-Based Image Analysis
green infrastructure
spatial management
Opis:
Zielona Infrastruktura jest koncepcją zintegrowanego podejścia do funkcjonalnego i przestrzennie powiązanego planowania obszarów zurbanizowanych wraz z ochroną elementów środowiska, która na przestrzeni ostatnich lat została doceniona przez podmioty odpowiedzialne za planowanie przestrzenne. Niniejsza praca przedstawia możliwości wykorzystania przetworzeń zobrazowań satelitarnych metodami klasyfikacji obiektowej w inwentaryzacji, planowaniu i monitorowaniu obiektów Zielonej Infrastruktury. Do tego celu wykorzystano zobrazowanie satelitarne pozyskane przez satelitę Pleiades w maju 2012 roku, reprezentujące obszar części dzielnicy Ursynów m.st. Warszawy. Wykorzystane w pracy metody klasyfikacji obiektowej wykazały wysoką efektywność w realizacji założonych zadań.
Green Infrastructure is a conception of an integrated approach to functional and spatially related planning of urban areas, along with environmental protection, which in recent years has been appreciated by spatial planning specialists. This study presents the capabilities of using satellite image processing with Geographic Object-Based Image Analysis methods in the inventory, planning and monitoring of Green Infrastructure objects. For this purpose, a satellite image acquired by the Pleiades satellite in May 2012, representing the area of a part of the Ursynów district of the capital city of Warsaw, was used. The object-oriented classification methods used in this work showed high effectiveness in the implementation of the tasks defined.
Źródło:
Teledetekcja Środowiska; 2018, 59; 29-49
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza możliwości automatycznej detekcji obiektów topograficznych na zdjęciach lotniczych i satelitarnych VHR
Analysis of the possibility of automatic detection of topographic objects in aerial and satellite images of the VHR
Autorzy:
Pluto-Kossakowska, Joanna
Kamiński, Michał
Powiązania:
https://bibliotekanauki.pl/articles/2058369.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
uczenie maszynowe
klasyfikacja obrazów
obiekty topograficzne
machine learning
image classification
topographical objects
Opis:
W artykule podjęto temat uczenia maszynowego w rozpoznawaniu obiektów topograficznych na zdjęciach lotniczych i satelitarnych VHR ze szczególnym uwzględnieniem Bazy Danych Obiektów Topograficznych BDOT10k. Celem prac badawczych było przetestowanie trzech algorytmów klasyfikacji nadzorowanej do automatycznej detekcji wybranych klas obiektów topograficznych, m.in.: budynków, betonowych oraz asfaltowych elementów szarej infrastruktury (drogi, chodniki, place), wód powierzchniowych, lasów, terenów zadrzewionych i zakrzewionych, terenów o niskiej roślinności oraz gleby odkrytej (grunty nieużytkowane, wyrobiska). Przeanalizowano trzy powszechnie stosowane klasyfikatory: Maximum Likelihood, Support Vector Machine oraz Random Trees pod kątem różnych parametrów wejściowych. Wynikiem przeprowadzonych badań jest ocena ich skuteczności w detekcji poszczególnych klas oraz ocena przydatności wyników klasyfikacji do aktualizacji bazy danych BDOT10k. Badania zostały przeprowadzone dla zdjęcia satelitarnego WorldView-2 o rozdzielczości przestrzennej 0,46 m oraz ortofotomapy ze zdjęć lotniczych o dokładności przestrzennej 0,08 m. Wyniki badań wskazują na to, że wykorzystanie różnych klasyfikatorów uczenia maszynowego oraz danych źródłowych wpływa nieznacznie na wynik klasyfikacji. Ogólne statystyki dokładności wskazują, że całościowo klasyfikacja z wykorzystaniem zdjęć satelitarnych dała nieco lepsze rezultaty o kilka punktów procentowych w granicach 76-81%, a dla zdjęć lotniczych 75-78%. Natomiast dla niektórych klas miara statystyczna F1 przekracza wartość 0,9. Testowane algorytmy uczenia maszynowego dają bardzo dobre rezultaty w identyfikacji wybranych obiektów topograficznych, ale nie można jeszcze mówić o bezpośredniej aktualizacji BDOT10k.
The article deals with the topic of machine learning (ML) in the recognition of topographic objects in aerial and satellite VHR image, with particular emphasis on the Topographic Objects Database (BDOT10k). The aim of the research work was to test three supervised classification algorithms for automatic detection of selected classes of topographic objects, including: buildings, concrete and asphalt elements of grey infrastructure (roads, pavements, squares), surface waters, forests, wooded and bushy areas, areas with low vegetation and uncovered soil (unused lands or excavations). Three commonly used classifiers were analysed: Maximum Likelihood, Support Vector Machine and Random Trees for different input parameters. The result of the research is the assessment of their effectiveness in the detection of individual classes and the assessment of the suitability of the classification results for updating the BDOT10k database. The research was carried out for the WorldView-2 satellite image with a spatial resolution of 0.46 m and orthophotos from aerial images with a spatial resolution of 0.08 m. The research results indicate that the use of different ML classifiers and source data slightly affects the classification result. Overall accuracy statistics show that the classification using satellite images gave slightly better results by a few percentage points in the range from 76% to 81%, and for aerial photos from 75% to 78%. However, for some classes the statistical measure F1 exceeds 0.9 value. The tested ML algorithms give very good results in identifying selected topographic objects, but it is not yet possible to directly update topographical database.
Źródło:
Teledetekcja Środowiska; 2022, 62; 5-15
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Znaczenie pola powierzchni i długości obiektów w półautomatycznej klasyfikacji obiektowej użytków zielonych na zdjęciach satelitów serii LANDSAT
The influence of area and length of objects in semi-automated object classification of grasslands on LANDSAT images
Autorzy:
Kosiński, K.
Powiązania:
https://bibliotekanauki.pl/articles/132243.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
użytki zielone
teledetekcja
Landsat
wielkość
kształt
uwilgotnienie
siedlisko
klasyfikacja
sztuczne sieci neuronowe
grasslands
remote sensing
size
shape
habitat
humidity
object
classification
artificial neural network
Opis:
Semi-automatic method for object classification of the grassland procedure involves two stages: 1) the creation of image segments as a representation of natural spatial complexes, 2) classification of the segments. So far, the classification algorithms were used refer to the three categories of characteristics: spectral, panchromatic or geometric. In the first stage of the work segmentation were performed of the composition of the two satellite images Landsat7 acquired at different seasons of the year: in September 1999 and the beginning of May 2001. Panchromatic data were used for distinguishing complexes due to the greater (in comparison with spectral data) spatial resolution. In the area of grasslands landscape-vegetation complexes (Matuszkiewicz, 1990, Kosiński, Hoffmann -Niedek, Zawiła, 2006) were distinguished of approximately a hundred to a few hundred meters in length and of about 20 ÷ 200 panchromatic image pixels. Semi-automated delimitation of complexes were carried out under the visual control, using as auxiliary material aerial photographs and topographic maps. In the second stage (classification of segments) an attempt were taken to assess the suitability of selected geometrical features to distinguish grasslands in use (currently or potentially) from grasslands unfit for production use due to excessive or insufficient moisture. The classification algorithm used GIS tools for measuring area and length of segments and artificial neural networks as a tool for classification. The previous studies of the Piotrkowska Plain show that the complexes of meadows used differ from those abandoned in terms of size and shape of objects (Kosiński, Hoffmann- Niedek, 2006, Fig. 1). Hypothesis that area and length of the landscape -vegetation complex are cues of identification in relation to the use and moisture of grasslands. 43 complexes of the grassland have been established as training samples on the Piotrkowska Plain in the Pilsia valley. In order to avoid overfitting classification algorithm to data from the Piotrkowska Plain, in order to allow the application of the algorithm for another mezoregionu 10 complexes have been selected as a validation set in the Szczercowska valley. To evaluate the classification results 32 complexes have been collected from Szczercowska Basin (test set). All treining set objects were described in terrein. Validation and test set objects were classified by a more accurate metod (based on biteporal image: Kosiński, Hoffmann -Niedek, 2008) and checked at random in the field. Objects of learning, validation and test set have been grouped into five categories according to use and habitat moisture (Kosiński, Hoffmann -Niedek, 2008; Table 1). For learning neural networks fife categories of objects of the learning and validation set were generalised into the three classes. In the Szczercowska Valley combination of characteristics (area and length) of the abandoned complexes is more close to the meadows in use than on the Piotrkowska Plain (Table 2). Therefore, the classification algorithm of the Piotrkowska Plain can not be directly applied to Szczercowska Basin. To obtain the correct result of classification, the classes of test set has been interpreted differently than in the learning and validation sets (Table 3, Figure 2). In the test sample 3/4 of the 23 complexes of meadows potentially used were classified correctly, while of nine abandoned ones due to unfavorable moisture habitats correctly classified 2/3. Thus confirmed the working hypothesis. Application of artificial neural networks can cancel the designation of non parametric empirical indicators of the size and shape of the complexes (Fig. 1). Neural networks auto-uwilgotmatically builds a morpfometric model based on simple indicators such as area and length of the object. Two model types of artificial neural network have been tested: 1) multilayer perceptrons (MLP) wich use hyperplanes to divide up feature space, 2) radial basis function network (RBF) wich use hyperspheres. MLP networks have proved to be more suitable to build the model than the RBF network.
Źródło:
Teledetekcja Środowiska; 2009, 42; 35-41
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies