Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "1-11" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
JabVis 1.1 ewolucja aplikacji z elementami sztucznej inteligencji
JabVis 1.1 evolution of application with elements of artificial intelligence
Autorzy:
Jakubek, A.
Boniecki, P.
Dejewska, T.
Zaborowicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/884284.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
owoce
jablka
dojrzalosc owocow
stopien dojrzalosci
sieci neuronowe sztuczne
system JabVis 1.1
Opis:
Bezinwazyjne metody określania stadium dojrzałości jabłek są obszarem zainteresowań branży sadowniczej oraz przetwórczej tych owoców. Odpowiedzią na to zapotrzebowanie jest aplikacja JabVis ver. 1.1 powstała w 2010 w Instytucie Inżynierii Rolniczej. Jądro aplikacji zostało zaczerpnięte z poprzedniej wersji programu, który służył z kolei do identyfikacji trzech odmian jabłek. W JabVis 1.1 zostały zintegrowane moduły identyfikujące odmianę oraz stopień dojrzałości jabłek. Liczba odmian jabłoni oraz operowanie tylko na trzech z nich, pozwala na dalszą wielopłaszczyznową rozbudowę systemu w przyszłości.
Non-invasive methods for determining the maturity of apples are an area of interest in the horticultural industry and the processing of these fruits. Created in 2010 at the Institute of Agricultural Engineering, the application JabVis version 1.1 is answer to this need.. Application kernel is taken from a previous version, which in turn served to identify three varieties of apples. Modules able to identify the variety and ripeness of apples are integrated into JabVis 1.1. Number of varieties of apple trees and manipulations on only three of them, allows for further expansion of multi-level system in the future.
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2011, 01
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Przykłady wykorzystania modelowania neuronowego w praktyce rolniczej
Examples of the use of neural modeling in agricultural practice
Autorzy:
Przybylak, A.
Boniecki, P.
Zaborowicz, M.
Mo, Zhou
Przybyl, K.
Powiązania:
https://bibliotekanauki.pl/articles/883761.pdf
Data publikacji:
2013
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
sieci neuronowe sztuczne
wykorzystanie
modelowanie neuronowe
modele klasyfikacyjne
system ObrazKoh
system Szkodniki
modele prognostyczne
system Neuronet
system Plon 1.0
system PrognozaPlony
system ProgAzot 1.1
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2013, 1
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowa identyfikacja dojrzalosci wybranych odmian jablek
Neural identification of ripeness of chosen varieties of apples
Autorzy:
Boniecki, P
Jakubek, A.
Kluza, T.
Nowakowski, K.
Powiązania:
https://bibliotekanauki.pl/articles/884097.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
jablon Gala Must
jablon Lobo
jablon Rajka
owoce
jablka
dojrzalosc owocow
stopien dojrzalosci
identyfikacja
barwa owocow
skala BBCH
ksztalt owocow
wspolczynnik ksztaltu
zbiory danych
sieci neuronowe sztuczne
percepton czterowarstwowy
siec radialnych funkcji bazowych
probabilistyczna siec neuronowa
system JabVis 1.1
Opis:
Celem niniejszej pracy była identyfikacja poziomu dojrzałości wybranych odmian jabłek za pomocą sztucznych sieci neuronowych, dokonana na podstawie reprezentatywnych cech, pozyskanych metodami analizy obrazu. Aby można prawidłowo rozwiązać tak sformułowane zadanie, wymagane było zapoznanie się z metodami analizy obrazu oraz zagadnieniami klasyfikacji z wykorzystaniem modeli neuronowych. W celu wyjaśnienia tego problemu został wytworzony, zgodnie z wymaganiami inżynierii oprogramowania, neuronowy system informatyczny przeznaczony do identyfikacji, zdefiniowanych wcześniej, klas dojrzałości wybranych odmian jabłek.
The main aim of this research was to identify the level of ripeness of chosen varieties of apples using neural networks. The process was based on a set of selected features acquired by images analysis. To secure one' s object it was necessary to get to know the available and current image analysis methodologies as well as the neural networks' classification abilities. The neural computer system has been designed, regarding all requirements of software engineering in order to develop an implementation of the model proposed during the phase described above. The software is capable to identify the ripeness of an apple from the chosen varieties.
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2010, 06; 7-10
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies