Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "evolutionary learning" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Examining the impact of positive and negative constant learning on the evolution rate
Autorzy:
Gajer, M.
Powiązania:
https://bibliotekanauki.pl/articles/1943200.pdf
Data publikacji:
2009
Wydawca:
Politechnika Gdańska
Tematy:
evolutionary systems
learning process
constant learning
Opis:
The paper discusses the influence of learning on evolutionary processes. In biological sciences it is a well-known fact that the rate of evolution can be effected by learning and the same phenomena can also be observed in artificial evolutionary systems, however, their nature is still not sufficiently well understood. In the paper the influence of constant learning on the rate of evolution is examined. The constant learning is a kind of learning during which the genotype of the individual being taught is moved toward the global optimum over a constant value. If the fitness function is monotonic, it can be concluded from the mathematical theory that such kind of learning should decelerate evolution. However, this fact is highly counterintuitive and for this reason it should be proved by numerical experiments. In the article the results of numerical simulations are presented. They prove that evolution is indeed decelerated by learning in case of the sigmoid fitness function. Moreover, two cases of constant learning were examined in the paper. These are the positive and negative constant learning. It was demonstrated that in the case of the negative constant learning the evolution was decelerated to a larger extent than in the case of the positive constant learning. The obtained results can help explain certain phenomena concerning the impact of learning on the evolution both in natural and artificial evolutionary systems.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2009, 13, 4; 355-362
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Learning decision rules using a distributed evolutionary algorithm
Autorzy:
Kwedlo, W.
Krętowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/1986918.pdf
Data publikacji:
2002
Wydawca:
Politechnika Gdańska
Tematy:
decision rule learning
distributed evolutionary algorithms
Opis:
A new parallel method for learning decision rules from databases by using an evolutionary algorithm is proposed. We describe an implementation of EDRL-MD system in the cluster of multiprocessor machines connected by Fast Ethernet. Our approach consists in a distribution of the learning set into processors of the cluster. The evolutionary algorithm uses a master-slave model to compute the fitness function in parallel. The remiander of evolutionary algorithm is executed in the master node. The experimental results show, that for large datasets our approach is able to obtain a significant speed-up in comparison to a single processor version.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2002, 6, 3; 483-492
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evolutionary algorithm for learning Bayesian structures from data
Autorzy:
Kozłowski, M.
Wierzchoń, S. T.
Powiązania:
https://bibliotekanauki.pl/articles/1986916.pdf
Data publikacji:
2002
Wydawca:
Politechnika Gdańska
Tematy:
Bayesian networks
structure learning
evolutionary algorithm
discrete optimization
Opis:
In this paper we report an evolutionary approach to learning Bayesian networks from data. We explain reasons, which advocate such a non-deterministic approach. We analyze weaknesses of previous works and come to conclusion that we should operate in the search space native for the problem i.e. in the space of directed acyclic graphs instead of standard space of binary strings. This requires adaptation of evolutionary methodology into very specific needs. We propose quite new data representation and implementation of generalized genetic operators and then we present an efficient algorithm capable of learning complex networks without additional assumptions. We discuss results obtained with this algorithm. The approach presented in this paper can be extended with the possibility to absorb some suggestions from experts or obtained by means of data preprocessing.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2002, 6, 3; 509-521
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies