- Tytuł:
- $B^q$ for parabolic measures
- Autorzy:
- Sweezy, Caroline
- Powiązania:
- https://bibliotekanauki.pl/articles/1217889.pdf
- Data publikacji:
- 1998
- Wydawca:
- Polska Akademia Nauk. Instytut Matematyczny PAN
- Tematy:
-
parabolic-type measures
Lip (1,1/2) domain
good-λ inequalities - Opis:
- If Ω is a Lip(1,1//2) domain, μ a doubling measure on $∂_{p}Ω, ∂//∂t - L_{i}$, i = 0,1, are two parabolic-type operators with coefficients bounded and measurable, 2 ≤ q < ∞, then the associated measures $ω_{0}$, $ω_{1}$ have the property that $ω_{0} ∈ B^{q}(μ)$ implies $ω_{1}$ is absolutely continuous with respect to $ω_{0}$ whenever a certain Carleson-type condition holds on the difference function of the coefficients of $L_{1}$ and $L_{0}$. Also $ω_{0} ∈ B^{q}(μ) $ implies $ω_{1} ∈ B^{q}(μ)$ whenever both measures are center-doubling measures. This is B. Dahlberg's result for elliptic measures extended to parabolic-type measures on time-varying domains. The method of proof is that of Fefferman, Kenig and Pipher.
- Źródło:
-
Studia Mathematica; 1998, 131, 2; 115-135
0039-3223 - Pojawia się w:
- Studia Mathematica
- Dostawca treści:
- Biblioteka Nauki