- Tytuł:
- Fragmentability and compactness in C(K)-spaces
- Autorzy:
-
Cascales, B.
Manjabacas, G.
Vera, G. - Powiązania:
- https://bibliotekanauki.pl/articles/1217940.pdf
- Data publikacji:
- 1998
- Wydawca:
- Polska Akademia Nauk. Instytut Matematyczny PAN
- Tematy:
-
pointwise compactness
Radon-Nikodym compact spaces
fragmentability - Opis:
- Let K be a compact Hausdorff space, $C_p(K)$ the space of continuous functions on K endowed with the pointwise convergence topology, D ⊂ K a dense subset and $t_p(D)$ the topology in C(K) of pointwise convergence on D. It is proved that when $C_p(K)$ is Lindelöf the $t_p(D)$-compact subsets of C(K) are fragmented by the supremum norm of C(K). As a consequence we obtain some Namioka type results and apply them to prove that if K is separable and $C_p(K)$ is Lindelöf, then K is metrizable if, and only if, there is a countable and dense subset D ⊂ K such that $(C(K),t_p(D))$ is analytic. We also show that if K is a separable Rosenthal compact space, then K is metrizable if, and only if, $C_p(K)$ is Lindelöf. We complete our study by showing that if K does not contain a copy of βℕ, then convex $t_p(D)$-compact subsets of C(K) have the weak Radon-Nikodym property.
- Źródło:
-
Studia Mathematica; 1998, 131, 1; 73-87
0039-3223 - Pojawia się w:
- Studia Mathematica
- Dostawca treści:
- Biblioteka Nauki