Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "k-means ++" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
K-means is probabilistically poor
Autorzy:
Kłopotek, Mieczysław
Powiązania:
https://bibliotekanauki.pl/articles/2201613.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
k-means
clustering
probabilistic k-richness
Opis:
Kleinberg introduced the concept of k-richness as a requirement for an algorithm to be a clustering algorithm. The most popular algorithm k means dos not fit this definition because of its probabilistic nature. Hence Ackerman et al. proposed the notion of probabilistic k-richness claiming without proof that k-means has this property. It is proven in this paper, by example, that the version of k-means with random initialization does not have the property probabilistic k-richness, just rebuking Ackeman's claim.
Źródło:
Studia Informatica : systems and information technology; 2022, 2(27); 5--26
1731-2264
Pojawia się w:
Studia Informatica : systems and information technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Supporting investment decisions using data mining methods
Autorzy:
Sysiak, W.
Trajer, J.
Janaszek, M.
Powiązania:
https://bibliotekanauki.pl/articles/93017.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
data mining
decision support
k-means clustering
neural networks
Opis:
This paper presents an application of k-means clustering in preliminary data analysis which preceded the choice of input variables for the system supporting the decision about stock purchase or sale on capital markets. The model forecasting share prices issued by companies in the food-processing sector quoted at the Warsaw Stock Exchange was created in STATISTICA 7.1. It was based on neural modeling and allowed for the assessment of changes direction in securities values (increase, decrease) and generates the quantitative forecast of their future price.
Źródło:
Studia Informatica : systems and information technology; 2009, 1(12); 67-78
1731-2264
Pojawia się w:
Studia Informatica : systems and information technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of data quoted on the Day-Ahead Market of TGE S.A. using Statistics and Machine Learning Toolbox
Autorzy:
Tchórzewski, Jerzy
Longota, Bartłomiej
Powiązania:
https://bibliotekanauki.pl/articles/2201615.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
artificial neural network
cluster analysis
Day-Ahead Market
k-means method
Matlab and Simulink environment
Statistics and Machine Learning Toolbox
Ward’s method
Opis:
The publication contains the results of research in the field of cluster analysis carried out using data quoted on the Day-Ahead Market of TGE S.A. Two methods were used in the analysis, one hierarchical known as the Ward’s method, and the other non-hierarchical - the k-means method. Many interesting research results have been obtained, which are illustrated, among others, in in the form of dendrograms, silhouette graphs and graphs in the form of clusters. Data on the volume and the volumeweighted average price of electricity were examined for various types of quotations: fixing 1, fixing 2 and continuous quotations. The research was carried out in the MATLAB and Simulink environments using a library called Machine and Statistics Learning Toolbox. Selected test results were interpreted.
Źródło:
Studia Informatica : systems and information technology; 2022, 2(27); 49--74
1731-2264
Pojawia się w:
Studia Informatica : systems and information technology
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies