Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "variables" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Estimation of Quadratic Finite Population Functions Using Calibration
Autorzy:
Pumputis, Dalius
Čiginas, Andrius
Powiązania:
https://bibliotekanauki.pl/articles/465643.pdf
Data publikacji:
2011
Wydawca:
Główny Urząd Statystyczny
Tematy:
calibrated estimator
penalized calibration
auxiliary variables
approximate variance
Opis:
Since the quadratic finite population functions can be expressed as totals over a synthetic population consisting of some ordered pairs of elements of the initial population, the traditional and penalized calibration technique is used to derive some calibrated estimators of the quadratic finite population functions. A linear combination of estimators discussed is considered as well. A comparison of approximate variances of the calibrated estimators is also presented. A simulation study is performed to analyze the empirical properties of the calibrated estimators of the finite population variance and covariance which appear as special cases of the quadratic functions. It is shown also how the calibrated estimators of the population covariance (variance) can be applied in regression estimation of the finite population total.
Źródło:
Statistics in Transition new series; 2011, 12, 2; 309-330
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of Selected Approaches to Clustering Categorical Variables
Autorzy:
Šulc, Zdeněk
Powiązania:
https://bibliotekanauki.pl/articles/465958.pdf
Data publikacji:
2014
Wydawca:
Główny Urząd Statystyczny
Tematy:
variable clustering
nominal variables
association measures
similarity measures.
Opis:
This paper focuses on recently proposed similarity measures and their performance in categorical variable clustering. It compares clustering results using three recently developed similarity measures (IOF, OF and Lin measures) with results obtained using two association measures for nominal variables (Cramér’s V and the uncertainty coefficient) and with the simple matching coefficient (the overlap measure). To eliminate the influence of a particular linkage method on the structure of final clusters, three linkage methods are examined (complete, single, average). The created groups (clusters) of variables can be considered as the basis for dimensionality reduction, e.g. by choosing one of the variables from a given group as a representative for the whole group. The quality of resulting clusters is evaluated by the within-cluster variability, expressed by the WCM coefficient, and by dendrogram analysis. The examined similarity measures are compared and evaluated using two real data sets from a social survey.
Źródło:
Statistics in Transition new series; 2014, 15, 4; 591-610
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Joint Calibration Estimator for dual frame surveys
Autorzy:
Elkasabi, Mahmoud A.
Heeringa, Steven G.
Lepkowski, James M.
Powiązania:
https://bibliotekanauki.pl/articles/465638.pdf
Data publikacji:
2015
Wydawca:
Główny Urząd Statystyczny
Tematy:
dual-frame estimation
calibration weighting
auxiliary variables
domain misclassification
Opis:
Many dual frame estimators have been proposed in the statistics literature. Some of these estimators are theoretically optimal but hard to apply in practice, whereas others are applicable but have larger variances than the first group. In this paper, a Joint Calibration Estimator (JCE) is proposed that is simple to apply in practice and meets many desirable properties for dual frame estimators. The JCE is asymptotically design unbiased conditional on the strong relationship between the estimation variable and the auxiliary variables employed in the calibration. The JCE achieves better performance when the auxiliary variables can fully explain the variability in the study variables or at least when the auxiliary variables are strong correlates of the estimation variables. As opposed to the standard dual frame estimators, the JCE does not require domain membership information. Even if included in the JCE auxiliary variables, the effect of the randomly misclassified domains does not exceed the random measurement error effect. Therefore, the JCE tends to be robust for the misclassified domains if included in the auxiliary variables. Meanwhile, the misclassified domains can significantly affect the unbiasedness of the standard dual frame estimators as proved theoretically and empirically in this paper.
Źródło:
Statistics in Transition new series; 2015, 16, 1; 7-36
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A General Family of Dual to Ratio-Cum-Product Estimator in Sample Surveys
Autorzy:
Singh, Rajesh
Kumar, Mukesh
Chauhan, Pankaj
Sawan, Nirmala
Smarandache, Florentin
Powiązania:
https://bibliotekanauki.pl/articles/465772.pdf
Data publikacji:
2011
Wydawca:
Główny Urząd Statystyczny
Tematy:
Family of estimators
auxiliary variables
bias
mean-squared error
Opis:
This paper presents a family of dual to ratio-cum-product estimators for the finite population mean. Under simple random sampling without replacement (SRSWOR) scheme, expressions of the bias and mean-squared error (MSE) up to the first order of approximation are derived. We show that the proposed family is more efficient than usual unbiased estimator, ratio estimator, product estimator, Singh estimator (1967), Srivenkataramana (1980) and Bandyopadhyaya estimator (1980) and Singh et al. (2005) estimator. An empirical study is carried out to illustrate the performance of the constructed estimator over others.
Źródło:
Statistics in Transition new series; 2011, 12, 3; 587-594
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A General Class of Mean Estimators Using Mixture of Auxiliary Variables for Two-Phase Sampling in the Presence of Non-Response
Autorzy:
Ahmad, Zahoor
Zubair, Rahma
Shahid, Ummara
Powiązania:
https://bibliotekanauki.pl/articles/465687.pdf
Data publikacji:
2014
Wydawca:
Główny Urząd Statystyczny
Tematy:
non-response
multi-auxiliary variables
regression-cum-ratioexponential
estimators
no information case
Opis:
In this paper we have proposed a general class of estimators for two-phase sampling to estimate the population mean in the case when non-responses occur at the first phase. Furthermore, several continuous and categorical auxiliary variable(s) have been simultaneously used while constructing the class. Also, it is assumed that the information on all auxiliary variables is not available for population, which is often the case. The expressions of the mean square error of the suggested class have been derived and several special cases of the proposed class have been identified. The empirical study has also been conducted.
Źródło:
Statistics in Transition new series; 2014, 15, 4; 501-524
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
New Method of Variable Selection for Binary Data Cluster Analysis
Autorzy:
Korzeniewski, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/466036.pdf
Data publikacji:
2016
Wydawca:
Główny Urząd Statystyczny
Tematy:
cluster analysis
market segmentation
selection of variables
binary data
k-means grouping
Opis:
Cluster analysis of binary data is a relatively poorly developed task in comparison with cluster analysis for data measured on stronger scales. For example, at the stage of variable selection one can use many methods arranged for arbitrary measurement scales but the results are usually of poor quality. In practice, the only methods dedicated for variable selection for binary data are the ones proposed by Brusco (2004), Dash et al. (2000) and Talavera (2000). In this paper the efficiency of these methods will be discussed with reference to the marketing type data of Dimitriadou et al. (2002). Moreover, the primary objective is a new proposal of variable selection method based on connecting the filtering of the input set of all variables with grouping of sets of variables similar with respect to similar groupings of objects. The new method is an attempt to link good features of two entirely different approaches to variable selection in cluster analysis, i.e. filtering methods and wrapper methods. The new method of variable selection returns best results when the classical k-means method of objects grouping is slightly modified.
Źródło:
Statistics in Transition new series; 2016, 17, 2; 295-304
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Classes of Modified Ratio Type And Regression-Cum-Ratio Type Estimators in Sample Surveys Using Two Auxiliary Variables
Autorzy:
Swain, A. K. P. C.
Powiązania:
https://bibliotekanauki.pl/articles/465714.pdf
Data publikacji:
2012
Wydawca:
Główny Urząd Statystyczny
Tematy:
ratio type estimators regression-cum-ratio type estimators simple random sampling
auxiliary variables
bias
efficiency
Opis:
In this paper generalized classes of modified ratio type and regression-cum-ratio type estimators of the finite population mean of the study variable are suggested in the presence of two auxiliary variables in simple random sampling without replacement when the population means of the auxiliary variables are known in advance. Some special cases of the generalized estimators are compared with respect to their biases and efficiencies both theoretically and with the help of some natural populations.
Źródło:
Statistics in Transition new series; 2012, 13, 3; 473-494
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Testing hypotheses about structure of parameters in models with block compound symmetric covariance structure
Autorzy:
Zmyślony, Roman
Kozioł, Arkadiusz
Powiązania:
https://bibliotekanauki.pl/articles/1194457.pdf
Data publikacji:
2019-07-02
Wydawca:
Główny Urząd Statystyczny
Tematy:
coordinate-free approach
Jordan algebra
multivariate model
block compound symmetric covariance structure
best unbiased estimators
testing structure of mean vector
testing independence of block variables
Opis:
In this article we deal with testing the hypotheses of the so-called structured mean vector and the structure of a covariance matrix. For testing the above mentioned hypotheses Jordan algebra properties are used and tests based on best quadratic unbiased estimators (BQUE) are constructed. For convenience coordinate-free approach (see Kruskal (1968) and Drygas (1970)) is used as a tool for characterization of best unbiased estimators and testing hypotheses. To obtain the test for mean vector, linear function of mean vector with the standard inner product in null hypothesis is changed into equivalent hypothesis about some quadratic function of mean parameters (it is shown that both hypotheses are equivalent and testable). In both tests the idea of the positive and negative part of quadratic estimators is applied to get the test, statistics which have F distribution under the null hypothesis. Finally, power functions of the obtained tests are compared with other known tests like LRT or Roy test. For some set for parameters in the model the presented tests have greater power than the above mentioned tests. In the article we present new results of coordinate-free approach and an overview of existing results for estimation and testing hypotheses about BCS models.
Źródło:
Statistics in Transition new series; 2019, 20, 2; 139-153
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies