Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "synthetic estimation" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
A calibrated synthetic estimator for small area estimation
Autorzy:
Iseh, Matthew Joshua
Enang, Ekaette Inyang
Powiązania:
https://bibliotekanauki.pl/articles/1827531.pdf
Data publikacji:
2021-09-06
Wydawca:
Główny Urząd Statystyczny
Tematy:
auxiliary variable
calibration estimation
simulation
synthetic estimation
Opis:
Synthetic estimators are known to produce estimates of population mean in areas where no sampled data are available, but such estimates are usually highly biased with invalid confidence statements. This paper presents a calibrated synthetic estimator of the population mean which addresses these problematic issues. Two known special cases of this estimator were obtained in the form of combined ratio and combined regression synthetic estimators, using selected tuning parameters under stratified sampling. In result, their biases and variance estimators were derived. The empirical demonstration of the usage involving the proposed calibrated estimators shows that they provide better estimates of the population mean than the existing estimators discussed in this study. In particular, the estimators were examined through simulation under three distributional assumptions, namely the normal, gamma and exponential distributions. The results show that they provide estimates of the mean displaying less relative bias and greater efficiency. Moreover, they prove more consistent than the existing classical synthetic estimator. The further evaluation carried out using the coefficient of variation provides additional confirmation of the calibrated estimator's advantage over the existing ones in relation to small area estimation.
Źródło:
Statistics in Transition new series; 2021, 22, 3; 15-30
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estimation of mask effectiveness perception for small domains using multiple data sources
Autorzy:
Sen, Aditi
Lahiri, Partha
Powiązania:
https://bibliotekanauki.pl/articles/2028543.pdf
Data publikacji:
2022-03-15
Wydawca:
Główny Urząd Statystyczny
Tematy:
cross-validation
jackknife
survey data
synthetic estimation
Opis:
Understanding the impacts of pandemics on public health and related societal issues at granular levels is of great interest. COVID-19 is affecting everyone in the globe and mask wearing is one of the few precautions against it. To quantify people's perception of mask effectiveness and to prevent the spread of COVID-19 for small areas, we use Understanding America Study's (UAS) survey data on COVID-19 as our primary data source. Our data analysis shows that direct survey-weighted estimates for small areas could be highly unreliable. In this paper, we develop a synthetic estimation method to estimate proportions of perceived mask effectiveness for small areas using a logistic model that combines information from multiple data sources. We select our working model using an extensive data analysis facilitated by a new variable selection criterion for survey data and benchmarking ratios. We suggest a jackknife method to estimate the variance of our estimator. From our data analysis, it is evident that our proposed synthetic method outperforms the direct survey-weighted estimator with respect to commonly used evaluation measures.
Źródło:
Statistics in Transition new series; 2022, 23, 1; 1-20
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Synthetic Estimators Using Auxiliary Information in Small Domains
Autorzy:
Rai, P. K.
Pandey, K. K.
Powiązania:
https://bibliotekanauki.pl/articles/465709.pdf
Data publikacji:
2013
Wydawca:
Główny Urząd Statystyczny
Tematy:
auxiliary information
small area (domain) estimation synthetic estimation
optimum weights
Opis:
In the present article we discuss the generalized class of synthetic estimators for estimating the population mean of small domains under the information of two auxiliary variables, and describe the special cases under the different values of the constant beta involved in the proposed generalized class of synthetic estimator. In addition we have taken a numerical illustration for the two auxiliary variables and compared the result for the synthetic ratio estimator under single and two auxiliary variables.
Źródło:
Statistics in Transition new series; 2013, 14, 1; 31-44
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Spatial microsimulation of personal income in Poland at the level of subregions
Autorzy:
Roszka, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/1193070.pdf
Data publikacji:
2019-08-30
Wydawca:
Główny Urząd Statystyczny
Tematy:
data integration
spatial microsimulation
small area estimation
synthetic data generation
Opis:
The paper presents an application of spatial microsimulation methods for generating a synthetic population to estimate personal income in Poland in 2011 using census tables and EU-SILC 2011 microdata set. The first section presents a research problem and a brief overview of modern estimation methods in application to small domains with particular emphasis on spatial microsimulation. The second section contains an overview of selected synthetic population generation methods. In the last section personal income estimation on NUTS 3 level is presented with special emphasis on the quality of estimates.
Źródło:
Statistics in Transition new series; 2019, 20, 3; 133-153
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies