Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "hazard rate" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
The length-biased power hazard rate distribution: Some properties and applications
Autorzy:
Mustafa, Abdelfattah
Khan, M. I.
Powiązania:
https://bibliotekanauki.pl/articles/2106877.pdf
Data publikacji:
2022-06-14
Wydawca:
Główny Urząd Statystyczny
Tematy:
length-biased
power hazard rate distribution
maximum likelihood estimation
Opis:
In this article, the length-biased power hazard rate distribution has introduced and investigated several statistical properties. This distribution reports an extension of several probability distributions, namely: exponential, Rayleigh, Weibull, and linear hazard rate. The procedure of maximum likelihood estimation is taken for parameters. Finally, the applicability of the model is explored by three real data sets. To examine, the performance of the technique, a simulation study is extracted.
Źródło:
Statistics in Transition new series; 2022, 23, 2; 1-16
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Generalized extended Marshall-Olkin family of lifetime distributions
Autorzy:
Goldoust, Mehdi
Mohammadpour, Adel
Powiązania:
https://bibliotekanauki.pl/articles/2034093.pdf
Data publikacji:
2022-03-15
Wydawca:
Główny Urząd Statystyczny
Tematy:
compound distribution
hazard rate function
lifetime distribution
maximum likelihood estimation
power series distribution
Opis:
We introduce a new generalized family of nonnegative continuous distributions by adding two extra parameters to a lifetime distribution, called the baseline distribution, by twice compounding a power series distribution. The new family, called the lifetime power series-power series family, has a serial arrangement of parallel structures, which extends the Marshall and Olkin structure. Four special models are discussed. A mathematical treatment of the new distributions is provided, including ordinary and incomplete moments, quantile, moment generating and mean residual functions. The maximum likelihood estimation technique is used to estimate the model parameters and a simulation study is conducted to investigate the performance of the maximum likelihood estimates. Its applicability is also illustrated by means of two real data sets.
Źródło:
Statistics in Transition new series; 2022, 23, 1; 55-74
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Agu-Eghwerido distribution, regression model and applications
Autorzy:
Agu, Friday Ikechukwu
Eghwerido, Joseph Thomas
Powiązania:
https://bibliotekanauki.pl/articles/1917110.pdf
Data publikacji:
2021-12-08
Wydawca:
Główny Urząd Statystyczny
Tematy:
AGUE distribution
AGUE regression model
moment generating function
means residual function
hazard rate function
survival rate function
Opis:
Modelling lifetime data with simple mathematical representations and an ease in obtaining the parameter estimate of survival models are crucial quests pursued by survival researchers. In this paper, we derived and introduced a one-parameter distribution called the Agu-Eghwerido (AGUE) distribution with its simple mathematical representation. The regression model of the AGUE distribution was also presented. Several basic properties of the new distribution, such as reliability measures, mean residual function, median, moment generating function, skewness, kurtosis, coefficient of variation, and index of dispersion, were derived. The estimation of the proposed distribution parameter was based on the maximum likelihood estimation method. The real-life applications of the distribution were illustrated using two real lifetime negatively and positively skewed data sets. The new distribution provides a better fit than the Pranav, exponential, and Lindley distributions for the data sets. The simulation results showed that the increase in parameter values decreases the mean squared error value. Similarly, the mean estimate tends towards the true parameter value as the sample sizes increase.
Źródło:
Statistics in Transition new series; 2021, 22, 4; 59-76
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Generalised Lindley shared additive frailty regression model for bivariate survival data
Autorzy:
Pandey, Arvind
Hanagal, David D.
Tyagi, Shikhar
Powiązania:
https://bibliotekanauki.pl/articles/2156991.pdf
Data publikacji:
2022-12-15
Wydawca:
Główny Urząd Statystyczny
Tematy:
Bayesian estimation
frailty
generalised Lindley frailty
generalised log-logistic distribution
generalised Weibull distribution
hazard rate
MCMC
random censoring
Opis:
Frailty models are the possible choice to counter the problem of the unobserved heterogeneity in individual risks of disease and death. Based on earlier studies, shared frailty models can be utilised in the analysis of bivariate data related to survival times (e.g. matched pairs experiments, twin or family data). In this article, we assume that frailty acts additively to the hazard rate. A new class of shared frailty models based on generalised Lindley distribution is established. By assuming generalised Weibull and generalised log-logistic baseline distributions, we propose a new class of shared frailty models based on the additive hazard rate. We estimate the parameters in these frailty models and use the Bayesian paradigm of the Markov Chain Monte Carlo (MCMC) technique. Model selection criteria have been applied for the comparison of models. We analyse kidney infection data and suggest the best model.
Źródło:
Statistics in Transition new series; 2022, 23, 4; 161-176
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies