Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "binary data" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
New Method of Variable Selection for Binary Data Cluster Analysis
Autorzy:
Korzeniewski, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/466036.pdf
Data publikacji:
2016
Wydawca:
Główny Urząd Statystyczny
Tematy:
cluster analysis
market segmentation
selection of variables
binary data
k-means grouping
Opis:
Cluster analysis of binary data is a relatively poorly developed task in comparison with cluster analysis for data measured on stronger scales. For example, at the stage of variable selection one can use many methods arranged for arbitrary measurement scales but the results are usually of poor quality. In practice, the only methods dedicated for variable selection for binary data are the ones proposed by Brusco (2004), Dash et al. (2000) and Talavera (2000). In this paper the efficiency of these methods will be discussed with reference to the marketing type data of Dimitriadou et al. (2002). Moreover, the primary objective is a new proposal of variable selection method based on connecting the filtering of the input set of all variables with grouping of sets of variables similar with respect to similar groupings of objects. The new method is an attempt to link good features of two entirely different approaches to variable selection in cluster analysis, i.e. filtering methods and wrapper methods. The new method of variable selection returns best results when the classical k-means method of objects grouping is slightly modified.
Źródło:
Statistics in Transition new series; 2016, 17, 2; 295-304
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The effect of binary data transformation in categorical data clustering
Autorzy:
Cibulková, Jana
Šulc, Zdenek
Sirota, Sergej
Rezanková, Hana
Powiązania:
https://bibliotekanauki.pl/articles/1194463.pdf
Data publikacji:
2019-07-02
Wydawca:
Główny Urząd Statystyczny
Tematy:
hierarchical cluster analysis
nominal variable
binary variable
categorical data
similarity measures
evaluation criteria
generated data
Opis:
This paper focuses on hierarchical clustering of categorical data and compares two approaches which can be used for this task. The first one, an extremely common approach, is to perform a binary transformation of the categorical variables into sets of dummy variables and then use the similarity measures suited for binary data. These similarity measures are well examined, and they occur in both commercial and non-commercial software. However, a binary transformation can possibly cause a loss of information in the data or decrease the speed of the computations. The second approach uses similarity measures developed for the categorical data. But these measures are not so well examined as the binary ones and they are not implemented in commercial software. The comparison of these two approaches is performed on generated data sets with categorical variables and the evaluation is done using both the internal and the external evaluation criteria. The purpose of this paper is to show that the binary transformation is not necessary in the process of clustering categorical data since the second approach leads to at least comparably good clustering results as the first approach.
Źródło:
Statistics in Transition new series; 2019, 20, 2; 33-47
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies