- Tytuł:
- Effectiveness of Unsupervised Training in Deep Learning Neural Networks
- Autorzy:
-
Rusiecki, Andrzej
Kordos, Mirosław - Powiązania:
- https://bibliotekanauki.pl/articles/1373690.pdf
- Data publikacji:
- 2015
- Wydawca:
- Uniwersytet Jagielloński. Wydawnictwo Uniwersytetu Jagiellońskiego
- Tematy:
-
neural networks
deep learning
restricted Boltzmann Machine
contrastive divergence - Opis:
- Deep learning is a field of research attracting nowadays much attention, mainly because deep architectures help in obtaining outstanding results on many vision, speech and natural language processing – related tasks. To make deep learning effective, very often an unsupervised pretraining phase is applied. In this article, we present experimental study evaluating usefulness of such approach, testing on several benchmarks and different percentages of labeled data, how Contrastive Divergence (CD), one of the most popular pretraining methods, influences network generalization.
- Źródło:
-
Schedae Informaticae; 2015, 24; 41-51
0860-0295
2083-8476 - Pojawia się w:
- Schedae Informaticae
- Dostawca treści:
- Biblioteka Nauki