- Tytuł:
-
Wpływ termicznego przetworzenia i enzymatycznej hydrolizy biomasy sorgo (Sorghum bicolor) na efektywność wytwarzania biogazu w procesie fermentacji metanowej
Influence of thermal preparation and enzymatic hydrolysis of sorghum (Sorghum moench) biomass on the yield of methane fermentation - Autorzy:
- Włodarczyk-Makuła, M.
- Powiązania:
- https://bibliotekanauki.pl/articles/1819526.pdf
- Data publikacji:
- 2011
- Wydawca:
- Politechnika Koszalińska. Wydawnictwo Uczelniane
- Tematy:
-
hydroliza biomasy
biomasa sorgo
charakterystyka osadu beztlenowego
fermentacja metanowa
characteristics of anaerobic sludge
hydrolysis of sorghum biomass
methane fermentation - Opis:
-
Celem prezentowanych badań było określenie wpływu przeprowadzenia wstępnej hydrotermalnej depolimeryzacji oraz enzymatycznej hydrolizy biomasy sorgo (Sorghum bicolor) na efektywność procesu fermentacji metanowej prowadzonej w warunkach mezofilowych (35 st.C) pod kątem ilości i składu uzyskiwanego biogazu.
The process of methane fermentation is optimized by implementation of new reactors construction, modification of technological conditions of the process and implementation of techniques of preliminary preparation, preconditioning and pretreatment of the substrate. One of the alternative solutions, that effectively enhances the process of anaerobic decomposition of biomass from energy crops, may be the incorporation of the stage of enzymatic processing to the technological system. The application of enzymes hydrolyzing cellulose, hemicellulases and cellobiose, has recently been addressed in multiple researches conducted worldwide. In addition, a number of fungi and bacteria are known to produce enzymes that are degrading biological material in the natural environment, and thereby may be applied for cost-effective production of cellulose biofuels. The reported study was aimed at determining the effect of preliminary hydrothermal depolymerization and enzymatic hydrolysis of sorghum (Sorghum moench) biomass on the yield of methane fermentation in terms of the quantity and composition of biogas produced. Irrespective of the stage of experiment, plant substrate disintegrated mechanically with a disintegrating device Robot Coupe Blixer 3, was subjected to preliminary hydrothermal depolymerization. It was carried out in a pressure reactor with active volume of 2.3 dm3. In brief, 300 g of Virginia fan petals biomass with hydration of 55% and organic matter content of 33.8% of fresh weight were administered to the reactor. Next, the reactor with the plant substrate was incubated at a temperature of 200°C, under a pressure of 17 Ba, for 120 minutes in a muffle furnace. In the subsequent stage of the experiment, the processed biomass of Virginia fan petals was applied into open reactors with active volume of 0.5 dm3 and equipped with a mixing system, and then an enzymatic multicomplex (Celluclast 1.5 L, Novozym 188 and Hemicellulase) was dosed in. In order to achieve the maximum activity of the enzymes applied, before they have been added to the hydrothermally-processed biomass of Virginia fan petals the plant had been hydrated to 98.0% and the pH value had been reduced to 5.23. Reactors used for enzymatic hydrolysis were then incubated at 20?C for 24 h. The experiment was divided into three variants depending on doses of the enzymes applied into the technological system. The application of pretreatment turned out to be low effective, since enzymatic hydrolysis of sorghum caused the release of a small quantity of carbohydrates to the dissolved phase. Analyses conducted in the study demonstrated also a decrease in dry matter content of fermented feedstock, with the decrease being especially tangible in the variant in which the highest dose of the enzymatic multicomplex was administered to sorghum biomass. A direct result of the application of enzymatic hydrolysis was to improve production efficiency and qualitative composition of biogas in terms of high methane content. - Źródło:
-
Rocznik Ochrona Środowiska; 2011, Tom 13; 1081-1092
1506-218X - Pojawia się w:
- Rocznik Ochrona Środowiska
- Dostawca treści:
- Biblioteka Nauki