Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Jóźwiak, J. J." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Zastosowanie kiszonki z kukurydzy Zea Mays L. do usuwania barwników z roztworów wodnych
Application of Maize Silage as a Biosorbent for the Removal of Dyes from Aqueous Solutions
Autorzy:
Filipkowska, U.
Jóźwiak, T.
Rodziewicz, J.
Kuciejewska, J.
Powiązania:
https://bibliotekanauki.pl/articles/1819174.pdf
Data publikacji:
2013
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
roztwory wodne
usuwanie barwników
ow-cost adsorbent
adsorption
biosorption
chitosan
sawdust
biomass
chitin
waste
Opis:
The aim of this study was to determine the effectiveness of synthetic dyes removal from aqueous solutions with the use of silage from common maize Zea mays L. as a biosorbent. Two dyes were used as adsorbates: cationic Basic Violet 10 (BV10) and anionic Reactive Black 5 (RB5). The silage from common maize Zea mays L. originated from the Department of Agrotechnology and Plant Production Management, University of Warmia and Mazury in Olsztyn. Before experiments, the silage was dried at a temp. of 60°C for 12 h and then sieved through a sieve with mesh diameter of 0.25 mm. The scope of analyses included determinations of: the effect of biosorbent dose on the course of adsorption process, optimal time of dyes adsorption, and correlation between type of dye and effectiveness of the adsorption process. The effectiveness of RB5 and BV10 adsorption from aqueous solutions onto silage was analyzed based on a correlation between the quantity of adsorbed dye Q (mg/g d.m.), and its equilibrium concentration C (mg/dm3). Results obtained were analyzed with the use of four sorption isotherms: Freundlich, Langmuir, double Langmuir, and Redlich-Peterson. Poorer fit of experimental results to the model was achieved only in the case of Freundlich isotherm. The remaining three models were very well describing the results. Owing to the presence of negative functional groups like e.g. –COOH and –OH in silage, it has a negative charge in aqueous solutions. This has a beneficial impact on the effectiveness of sorption of positively-charged cationic dyes. In turn, electrostatic repulsion of a negatively-charged surface of a biosorbent and anionic dyes exerts a negative effect on sorption effectiveness. The maximum sorption capacity of silage determined for the cationic dye BV10 was ca. 180 mg/g d.m. and was significantly higher than the sorption capacity assayed for the anionic dye RB5 - ca. 80 mg/g d.m. In comparing the achieved results for the sorption of the analyzed dyes RB5 and BV10 onto maize silage with the effectiveness of dyes sorption on other biosorbents, it may be concluded that the waste maize silage displays very good sorption properties and may be successively applied for dye removal.
Źródło:
Rocznik Ochrona Środowiska; 2013, Tom 15, cz. 3; 2324-2338
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie kompostu jako taniego sorbentu do usuwania barwników z roztworów wodnych
Application of Compost as a Cheap Sorbent for Dyes Removal from Aqueous Solutions
Autorzy:
Jóźwiak, T.
Filipkowska, U.
Rodziewicz, J.
Mielcarek, A.
Owczarkowska, D.
Powiązania:
https://bibliotekanauki.pl/articles/1819113.pdf
Data publikacji:
2013
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
tani sorbent
usuwanie barwników
roztwór wodny
reactive dyes
textile dyes
waste water
basic dyes
acid dyes
fly-ash
adsorption
sorption
chitosan
equilibrium
Opis:
This study was aimed at determining the feasibility of using compost as an unconventional sorbent for dyes removal from aqueous solutions. Compost applied in the study was a product of sewage sludge composting with plant residues (birch wood chips and rapeseed straw). Experiments were conducted for two anionic reactive dyes: Reactive Yellow 84 [RY84] (1701 g/mol – λmax = 357.5 nm) and Reactive Black 5 [RB5] (991 g/mol – λmax = 600.0 nm), and for two cationic dyes: Basic Green 4 [BG4] (365 g/mol – λmax = 618.0 nm) and Basic Violet 10 [BV10] (479 g/mol – λmax = 547.5 nm). The scope of the study included: determination of the optimal pH value of dyes adsorption onto compost, determination of equilibrium time of dyes sorption onto compost, determination of the maximum sorption capacity of the analyzed dyes on compost. During each experiment, sorbent concentration in the solution was at 5 g d.m./dm3. The concentration of dye remaining in the solution was determined with the spectrophotometric method on a UV-VIS SP 2000 spectrophotometer. Analyses were conducted at a room temperature – T = 22°C. The pH value of solutions was adjusted with aqueous solutions of HCl and NaOH. Sorption of the anionic reactive dyes RY84 and RB5 was the most effective at pH = 3. The optimal pH value of cationic dyes sorption was established at pH = 5. At a high pH value (pH = 9), the sorption of each type of dye was impaired due to partial solubilization of the compost sorbent. The equilibrium time of dyes sorption on compost accounted for 180 min in the case of RY84, RB5 and BG4, and for 240 min in the case of BV10 – 240 min. Analyses of the maximum sorption capacity of the selected dyes on compost were carried out already after establishing the optimal pH value of the sorption process for each dye. Results obtained were described with the use of two sorption models: a heterogenous Langmuir 2 model (double Langmuir equation), and a heterogenousFreundlich model. The Langmuir 2 model showed the best fit to experimental data (R2> 0.99). Due to the presence of functional groups -COOH and -OH, compost is negatively charged in aqueous solutions owing to which it prefers compounds with a positive charge (cationic dyes) during sorption. Electrostatic repulsion significantly impairs the adsorption of anionic dyes. The maximum sorption capacity of compost in the case of RY84 and RB5 reached 2.15 mg/g d.m. and 4.79 mg/g d.m., whereas in the case of BG4 and BV10 – 26.41 mg/g d.m. and 27.20 mg/g d.m., respectively. Results of the maximum sorption capacity of dyes on compost were referred to results obtained with other unconventional and cheap sorbents.
Źródło:
Rocznik Ochrona Środowiska; 2013, Tom 15, cz. 3; 2398-2411
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Charakterystyka jakościowa ścieków powstających w browarach i słodowniach
Quality characteristics of wastewater from malt and beer production
Autorzy:
Janczukowicz, W.
Mielcarek, A.
Rodziewicz, J.
Ostrowska, K.
Jóźwiak, T.
Kłodowska, I.
Kordas, M.
Powiązania:
https://bibliotekanauki.pl/articles/1818937.pdf
Data publikacji:
2013
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
charakterystyka jakościowa ścieków
słodownia
malt-house
qualitative characteristics of wastewater
Opis:
Beer is the fifth most popular drink all over the world. Annual consumption reaches 23 L per capita. In Poland, the brewery industry has been the subject of intensive transformations in the last 20 years as a result of, most of all, an increase in beer consumption and brewery wastewater quantity increase are observed. Two main cycles may be distinguished in the beer production process: production of malt and production of beer. Wastewaters are generated at all production stages: soaking and transport of grain (malt house), spent grain anddraff (brewhouse), yeast washing and waste yeast pressing (fermentation house), and mainly from processes of production appliances, rooms and packages cleaning. Hence, the quantity of generated wastewaters is significantly affected by the washing technology of appliances and installations. The study presents the physicochemical characteristics of wastewaters originated from the brewery plant production departments. Wastewater samples were taken from two brewery plants (BP) 1 and 2. They produce lager type beer. The mean water consumption in the breweries in the study period reached 0.30 and 0.45 m3 hL-1 of produced beer respectively for BP1 and for BP2. Wastewaters originated from: brewhouse, the process of spinning (centrifuge), fermentation house (fermentation tanks, horizontal unitanksUT), storage facilities (with facilities for filtration, storage in the pressurized tanks BBT type) and racking house – BP1 and frommalt house, brewhouse, fermentation house and racking house at BP2. In addition, analyses were conducted on a mixture of wastewaters originating from the whole brewery plant that, apart from the above-mentioned production wastewaters, contained wastewaters from social facilities and administrative buildings.Physicochemical analysesincluded: pH, suspended solids, total nitrogen, total phosphorus, COD and BOD. Results of the study demonstrate a correlation between the site of wastewaters generation, specific character of a unitary technological process and the quality of wastewaters discharged to a sewage system, including their potential biodegradability. The highest average concentration of organic compounds (COD and BOD) (28161 mg O2 ∙ L-1 and 13595 mg O2 ∙ L-1) and total phosphorus (75,2 mg P ∙ L-1 )were observed in the effluents produced during the centrifuge process at the brew house. Wastewater from brewhouse located at BP1 characterized by the highest suspended solids concentration (924 mg d.m. L-1). The maximum values of total nitrogen (132,9 mg N ∙ L-1)were reported in the effluent from the fermentation process (BP2).Despite significant differences in the quality of wastewaters, they were characterized by the C:N:P ratio beneficial for the biological treatment, irrespective of the source of their origin.Ratios of BOD : (TKN + TP) (>25)in brewery wastewaters indicate the potential for highly-effective process of biological N and P removal. These ratios show that the processes of denitrification and biological phosphorus removal should not be limited by the availability of the organic substrate. Moreover, most examined brewery wastewater streams can be applied as external carbon source in biological processes removal of nitrogen and phosphorus from wastewater containing insufficient amounts of biodegradable organic matter.
Źródło:
Rocznik Ochrona Środowiska; 2013, Tom 15, cz. 1; 729-748
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies