- Tytuł:
- On some Properties of quasi-MV √ Algebras and $/sqrt$ quasi-MV Algebras. Part IV
- Autorzy:
-
Jipsen, Peter
Ledda, Antonio
Paoli, Francesco - Powiązania:
- https://bibliotekanauki.pl/articles/1368623.pdf
- Data publikacji:
- 2013
- Wydawca:
- Uniwersytet Jagielloński. Wydawnictwo Uniwersytetu Jagiellońskiego
- Opis:
- In the present paper, which is a sequel to [20, 4, 12], we investigate further the structure theory of quasi-MV algebras and $/sqrt'$quasi-MV algebras. In particular: we provide a new representation of arbitrary $/sqrt'$qMV algebras in terms of $/sqrt'$qMV algebras arising out of their MV* term subreducts of regular elements; we investigate in greater detail the structure of the lattice of $/sqrt'$qMV varieties, proving that it is uncountable, providing equational bases for some of its members, as well as analysing a number of slices of special interest; we show that the variety of $/sqrt'$qMV algebras has the amalgamation property; we provide an axiomatisation of the 1-assertional logic of $/sqrt'$qMV algebras; lastly, we reconsider the correspondence between Cartesian $/sqrt'$ qMV algebras and a category of Abelian lattice-ordered groups with operators first addressed in [10].
- Źródło:
-
Reports on Mathematical Logic; 2013, 48; 3-36
0137-2904
2084-2589 - Pojawia się w:
- Reports on Mathematical Logic
- Dostawca treści:
- Biblioteka Nauki