Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "kawerny" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Kawerny solne w prowincji Alberta, Zachodnia Kanada
Salt caverns in Province of Alberta, Western Canada
Autorzy:
Kukiałka, P.
Powiązania:
https://bibliotekanauki.pl/articles/2192115.pdf
Data publikacji:
2015
Wydawca:
Polskie Stowarzyszenie Górnictwa Solnego
Tematy:
kawerny solne
kawerna magazynowa
kawerny do składowania odpadów
otwory zrzutowe
ługowanie
SAGD
CSS
Kanada
Alberta
salt caverns
storage caverns
disposal caverns
disposal wells
Canada
Opis:
Kawerny solne w prowincji Alberta są ściśle związane z przemysłem naftowym. W chwili obecnej czynne są dwa typy kawern solnych: kawerny magazynowe oraz kawerny do składowania odpadów. Kawerny magazynowe służą do magazynowania: gazu ziemnego, skroplonego gazu, nieprzetworzonej ropy naftowej oraz rozpuszczalnika wykorzystywanego w procesie upłynniania wydobytych bituminów. Kolejnym typem są kawerny do składowania odpadów. Kawerny te możemy podzielić na dwa podstawowe typy: komercyjne, służące do składowania różnego rodzaju odpadów oraz kawerny budowane przez firmy naftowe służące do składowania odpadów ściśle związanych z wydobyciem i oczyszczaniem bituminów przez daną kopalnię. Kawerny zlokalizowane są w dwóch największych formacjach solonośnych: Lotsberg oraz Prairie Evaporite. Geograficznie, kawerny magazynowe w większości zlokalizowane są na północ od Edmonton, w okolicach miasta Fort Saskatchewan, zaś nowobudowane kawerny do składowania odpadów są ulokowane w sąsiedztwie fabryk wytwarzających te odpady, bądź w tym celu są używane wyeksploatowane kawerny do produkcji solanki.
Salt caverns in Alberta are closely related to the oil industry. At the moment, there are two types of active salt caverns: storage and waste disposal caverns. Storage caverns are used to store: natural gas, liquid gas, crude oil, and solvent used in the liquefaction process the extracted heavy bitumen. Another type are disposal caverns for the storage of waste. These caverns can be divided into two basic types: commercial for storing different types of waste, and caverns built by the oil companies place for the collection of waste closely associated with the extraction and refining of bitumen by a plant. Caverns are located in the two largest salt formations: Lotsberg and Prairie Evaporite. Geographically, the storage caverns are mostly located to the north of Edmonton, near the city of Fort Saskatchewan, while newly built caverns for the storage of waste are located in the vicinity of factories producing the waste, or for this purpose are used exploited brine production caverns.
Źródło:
Przegląd Solny; 2015, 11; 83--90
2300-9349
Pojawia się w:
Przegląd Solny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Badania szczelności w kawernach solnych w Kanadzie
Salt cavern Mechanical Integrity Testing (MIT) in Canada
Autorzy:
Kukiałka, P.
Powiązania:
https://bibliotekanauki.pl/articles/2192074.pdf
Data publikacji:
2017
Wydawca:
Polskie Stowarzyszenie Górnictwa Solnego
Tematy:
kawerny solne
kawerna magazynowa
kawerny do składowania odpadów
szczelność kawern
Kanada
salt caverns
storage caverns
disposal caverns
cavern integrity
Canadian Standards Association
Z341-14
Canada
Opis:
Głównym celem badań szczelności (MIT) kawern solnych (kawerny magazynowe oraz do składowania odpadów) przeprowadzanych w Kanadzie jest pokazanie, że magazynowany/ składowany produkt jest bezpieczny i jego migracja na powierzchnię terenu lub do innych formacji geologicznych nie jest możliwa. Szczegółowe zalecenia dotyczące MIT zostały określone przez Canadian Standard Association (CSA). Badania szczelności zgodnie z zaleceniami CSA przeprowadzane są z użyciem sprężonego azotu. Zgodnie z regulacjami prawnymi, pierwsze badanie szczelności musi być przeprowadzone po zakończeniu procesu ługowania. Pozytywny wynik MIT jest warunkiem koniecznym do otrzymania koncesji na eksploatacje kawerny. Czas pomiędzy kolejnymi testami szczelności nie może być dłuższy niż pięć lat. Zalecany przebieg badań jest opublikowany w biuletynie Z341-14 wydanym przez Canadian Standards Association. W artykule zamieszczono opis przygotowania kawerny do testów szczelności, sposób wykonania testów i interpretację wyników.
The purpose of the salt cavern (storage and disposal) Mechanical Integrity Test (MIT) is to prove that the product stored in the cavern is safe and its leak into the surface or another geological formation is not possible. It is a pressure nitrogen/ brine interface type test. Detailed recommendations concerning MIT were described by Canadian Standards Association (CSA). According to CSA, the first test must be done at the end of the cavern mining process and with use of compressed nitrogen. Positive result of MIT is necessary to obtain license for the cavern service. The test must be repeated every five years. The full recommended test procedure is published in bulletin Z341-14 of Canadian Standards Association. In this paper, caverns preparation for MIT was described as well as practical application of test procedures and results interpretation.
Źródło:
Przegląd Solny; 2017, 13; 122--125
2300-9349
Pojawia się w:
Przegląd Solny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Koncepcja magazynowania nadwyżek energii elektrycznej w postaci wodoru w kawernach w złożach soli kamiennej w Polsce – wstępne informacje
Conception of storage of electricity surplus in the form of hydrogen in rock salt caverns in Poland – preliminary information
Autorzy:
Chromik, M.
Powiązania:
https://bibliotekanauki.pl/articles/2192108.pdf
Data publikacji:
2016
Wydawca:
Polskie Stowarzyszenie Górnictwa Solnego
Tematy:
magazynowanie energii
wodór
kawerny solne
HESTOR
OZE
energy storage
hydrogen
salt caverns
RES
Opis:
Koncepcja wykorzystania wodoru do magazynowania energii nie jest nowa. W Niemczech od wielu lat prowadzone są prace nad magazynowaniem wodoru w kawernach solnych, także w Polsce prowadzone są od niedawna prace w tej dziedzinie. Artykuł ten przybliżyć ma główne elementy tej koncepcji a także przedstawić krótko przeprowadzone do tej pory prace nad tą koncepcją w Polsce. Pierwsza część to krótkie scharakteryzowanie podstawowych elementów koncepcji tzn. możliwości pozyskiwania energii, opis złóż soli kamiennej w Polsce oraz schemat magazynowania energii w postaci wodoru. Energia elektryczna przeznaczona do magazynowania pochodziła by głownie z OZE lub nadwyżek energii z konwencjonalnych elektrowni. Jedynymi złożami soli kamiennej nadającymi się do tworzenia w nich podziemnych magazynów są te z formacji cechsztyńskiej. Magazynowanie energii elektrycznej w postaci wodoru polega na sprężeniu w kawernie solnej wodoru, powstałego z procesu elektrolizy wody. W roku 2013 powstało konsorcjum składające się z Grupy LOTOS (lider), Gaz-Systemu, AGH, CHEMKOP-u, Politechniki Śląskiej i Politechniki Warszawskiej. Konsorcjum to otrzymało w ramach programu GEKON prowadzonego przez NCBiR dofinasowanie prac badawczych i w roku 2015 rozpoczęło prace nad projektem HESTOR „Magazynowanie energii w postaci wodoru w kawernach solnych”. W ramach projektu zostały przeanalizowane różne lokalizacje w których mogłyby powstać kawerny solne magazynujące wodór. Dla najbardziej obiecujących lokalizacji zostały zaprojektowane odpowiednie kształty kawern oraz przeprowadzono obliczenia termodynamiczne. Krótkie podsumowanie tych prac przedstawione zostanie w tym artykule. Ostatnia część artykułu dotyczy korzyści jakie daje magazynowanie wodoru.
The concept of using hydrogen for storing energy is not new. In Germany, for many years, works on hydrogen storage in salt caverns have been proceeded, recently also in Poland such a work started. This article is to introduce the main elements of this concept and present a short description of work on this idea carried out up to now in Poland. The first part contains a brief characterization of the basic elements of the concept, i.e. the possibility of generating energy, the description of the salt rock deposits in Poland and the scheme of energy storage in the form of hydrogen. Electricity designed to store should came mainly from Renewable Energy Sources (RES) or from surplus of power from conventional power stations. The only deposits suitable for creating in them the underground storage are those of the Zechstein formation. Electricity will be stored in the salt cavern in the form of compressed hydrogen which will be obtained in the process of electrolysis of water. In 2013 a consortium containing LOTOS Group SA (leader), Gaz-System, AGH University of Science and Technology, CHEMKOP, Silesian University of Technology, and Warsaw University of Technology has been created This consortium has received funding from NCBiR ordered – GEKON Frame, and in 2015 began work on the project HESTOR “Energy storage in the form of hydrogen in salt caverns.” Within the project different locations where salt caverns storing hydrogen might be located have been analyzed. For the most promising locations were designed suitable cavern shapes and thermodynamic calculations were conducted. A brief summary of this work will be presented in this article. The last part of the article concerns the benefits of hydrogen storage.
Źródło:
Przegląd Solny; 2016, 12; 11--18
2300-9349
Pojawia się w:
Przegląd Solny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Możliwości magazynowania energii elektrycznej w soli kamiennej w postaci wodoru w regionie nadbałtyckim
Storage capabilities for electricity in the form of hydrogen in rock salt caverns in the Baltic area
Autorzy:
Chromik, M.
Powiązania:
https://bibliotekanauki.pl/articles/2192117.pdf
Data publikacji:
2015
Wydawca:
Polskie Stowarzyszenie Górnictwa Solnego
Tematy:
magazynowanie energii
wodór
kawerny solne
rejon nadbałtycki
energy storage
hydrogen
salt caverns
Baltic area
Opis:
Rozwój kraju nierozerwalnie połączony jest ze wzrostem zapotrzebowania na energię elektryczną. Niedobory energii możemy kompensować przez budowę nowych elektrowni lub modernizację i optymalizację starych albo poprzez magazynowanie niewykorzystanej energii (np. w nocy). Artykuł ten przedstawia możliwości magazynowania energii elektrycznej w postaci wodoru w kawernach solnych w pokładzie cechsztyńskiej soli kamiennej Na1 w rejonie nadbałtyckim. Energia elektryczna, która miałaby być magazynowana może pochodzić głównie z Odnawialnych Źródeł Energii (OZE) lub będą to nadwyżki energii z konwencjonalnych elektrowni. Rejon ze złożem soli, który uznano za potencjalnie perspektywiczny do tworzenia w nim kawern solnych znajduje się w całości w województwie pomorskim. Omawiany rejon rozciąga się od miejscowości Kopalino na północy do miasta Lębork na południu, oraz od Smołdzina na zachodzie do Żarnowca na wschodzie, zajmuje powierzchnię 1907 km2. W rejonie tym na podstawie dostępnych danych z otworów wiertniczych przewiercających pokład soli Na1, określono powierzchnię i objętość tego pokładu. Wyznaczoną objętość pokładu soli zredukowano przy zastosowaniu kilku kryteriów, w wyniku czego otrzymano objętość jaka mogłaby być wykorzystana do budowy kawern solnych oraz średnią miąższość soli. W warunkach rzeczywistych na tak dużym obszarze nie jest możliwe wykonanie kawern o tych samych wymiarach i kształcie, dlatego w obliczeniach użyto kawerny modelowej o określonych wymiarach. Ilość potencjalnych lokalizacji kawern modelowych na wybranym obszarze, została wyznaczona przy założeniu ich rozstawu w siatce trójkąta równobocznego. Przedstawiono przykład magazynu na wodór, który składałby się z 5 kawern modelowych. Objętość tego magazynu pozwoliła określić ilość możliwego do zmagazynowania wodoru, a na tej podstawie – potencjalną ilość energii elektrycznej, która może być zmagazynowana. Przedstawione rozważania dotyczą tylko zagadnień geologiczno-górniczych, nie obejmują uwarunkowań środowiskowych i społecznych. Nie będą wskazywane konkretne miejsca pod pojedyncze kawerny czy magazyny.
Development of the country is inextricably connected to the increase in request for electricity. Energy deficiency, we can compensate by building new power station or upgrades and optimizations of old or unused energy through storage (eg. at night). This article has the capabilities to bring the bed of salt Na1 in the Baltic region to store electricity in hydrogen salt caverns. Electricity, which would be stored would come mainly from RES or surplus energy from conventional power station. The region which was considered suitable to build on the salt caverns located entirely in Pomerania. The discussed region stretches from the village Kopalino the north to the town of Lębork in the south and from the west Smołdzino to Żarnowiec the east, covers an area of 1,907 km2. Based on available data from boreholes drilled Na1 board in this region determined its surface and volume. The designated volume of the bed salt reduced by using several criteria, to give a volume which could be used to build the salt caverns and the average thickness of the salt. In real conditions over such a large area is not possible to make the caverns of the same size and shape, and therefore the calculation used cavern model of defined dimensions. Number of potential locations caverns model in a selected area, was determined assuming their spacing in the grid of an equilateral triangle. An example of store hydrogen, which would consist of five caverns model. The volume of this magazine helped determine the amount of potential for storing hydrogen, and on this basis - the potential amount of electrical energy that can be stored. The discussion applies only to geological and mining issues, they do not include environmental and social. They will not indicated the specific spaces in a single caverns or large storage.
Źródło:
Przegląd Solny; 2015, 11; 44--50
2300-9349
Pojawia się w:
Przegląd Solny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sonar surveys under challenging conditions in gas at very low pressure and in crude oil
Autorzy:
Hasselkus, F.
Reitze, A.
Powiązania:
https://bibliotekanauki.pl/articles/2192122.pdf
Data publikacji:
2015
Wydawca:
Polskie Stowarzyszenie Górnictwa Solnego
Tematy:
sonar
cavern surveying
low pressure
gas cavern monitoring
badanie kawerny
niskie ciśnienie
monitorowanie komory gazowej
Opis:
Sonar surveys have for decades been the established technique for the regular monitoring of gas and oil storage caverns. So as to have the best possible basic physical conditions gas caverns should be under the highest possible pressure at the time they are surveyed. This is all the more important the greater the distances to be measured. With regard to caverns located deeper than 1000 m pressures > 150 bar provide a good basis for achieving qualitatively reliable and focused measurements. Surveying shallow caverns with a low maximum pressure < 100 bar or caverns that for operational reasons have to be under low pressure is considerably more challenging than a “standard survey” under high pressure. The lower the pressure the higher the attenuation of the acoustic waves. Consequently to be able to interpret these reflections the measuring system must be in a position to amplify the significantly attenuated signal reflections by a suitable amplifier technology and by applying mathematical correlation techniques. Furthermore special transducer technology is necessary when working at such low pressures. Surveys in caverns at pressures between 80 and 90 bar had been carried out successfully for years. Then the task of surveying gas caverns with a pressure of just 45 bars presented a new challenge. Indeed, to obtain qualitatively usable results under these demanding basic conditions it was essential to have sophisticated transducer technology as well as high performance transmitter and receiver equipment. By carrying out special developments and modifications in this area equipment has been designed which enables distances of more than 85 m to be measured even if the pressure is as low as 45 bar. This provides the customer with a means of monitoring all parts of those caverns which previously were internally regarded as “unsurveyable” without having to flood the cavern with brine. The technical changes that have been made not only bring about advantages in terms of measuring greater distances at low pressure, but also provide extra performance. In caverns with an extremely long extension (e.g. elongated fingers due to leached potash zones, steeply inclined bedding and so on) it is now possible to measure considerably longer distances. In some cases it is even possible to measure distances of well over 100 m in gas or crude oil.
Źródło:
Przegląd Solny; 2015, 11; 109--115
2300-9349
Pojawia się w:
Przegląd Solny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wybrane aspekty termodynamiczne magazynowania wodoru w kawernach solnych
Selected thermodynamical aspects of hydrogen storage in salt caverns
Autorzy:
Urbańczyk, K.
Powiązania:
https://bibliotekanauki.pl/articles/2192111.pdf
Data publikacji:
2016
Wydawca:
Polskie Stowarzyszenie Górnictwa Solnego
Tematy:
magazynowanie wodoru
kawerny solne
procesy termodynamiczne
program KAGA
hydrogen storage
salt caverns
thermodynamical process
KAGA software
Opis:
Przestawiono wybrane rezultaty modelowania termodynamicznych procesów związanych z magazynowaniem wodoru w kawernach solnych. Do symulacji użyto programu KAGA w którym zaimplementowano cztery różne równania stanu dla wodoru.
Selected results of modeling thermodynamic processes connected with underground storage of hydrogen in salt caverns are presented. KAGA software was used for the simulation with four different equation of state for hydrogen.
Źródło:
Przegląd Solny; 2016, 12; 92--97
2300-9349
Pojawia się w:
Przegląd Solny
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies