Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "overhead" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Development and Testing of New Solutions of Overhead Contact Line Accessories
Rozwój i badania nowych rozwiązań wyposażenia sieci elektrycznej
Autorzy:
Kiesiewicz, G.
Knych, T.
Kwaśniewski, P.
Rojek, A.
Powiązania:
https://bibliotekanauki.pl/articles/214822.pdf
Data publikacji:
2016
Wydawca:
Instytut Kolejnictwa
Tematy:
overhead contact line
contact line accessories
numerical research
sieć trakcyjna
przewód jezdny
urządzenia sieci trakcyjnej
badania numeryczne
Opis:
The overhead contact line (OCL) consists of various kinds of supporting structures and elements that allows the installation of the contact wire horizontally to the track. OCL is a complex mechanical and electrical system, that has to ensure the proper electric power transfer to the traction vehicle. During the exploitation of contact line accessories (extension arms, cantilevers, tensioning devices etc.) different kinds of problems appear, significantly affecting the railway traffic. Furthermore, the outdated design is the reason for difficulties with assembly and daily use. Research results, stress characteristic numerical analyses, clamping force relaxation experimental results and contact line equipment corrosion resistances of present in-use devices are presented. An OCL new generation concept was developed. Stress distribution and safety factor tests were conducted at operationally loaded construction. Obtained results showed that currently used equipment at the operational loads has eff ort close to the material yield strength. Tested elements have also different kinds of design defects, low corrosion resistance and rheological resistance at a level of 8–10% degree of relaxation. Conducted research showed that newly designed elements have a safe level of effective stress and high safety factor – all tested under an operational load regime. A new solution of no-load tensioning device was designed and tested. The contact wire or catenary wire tensioning force is generated by device spiral springs. Properly designed elements application – cams – allowed to obtain a constant tensioning force in full contact wire length variation range.
Sieć trakcyjna (OCL) składa się z różnych konstrukcji i elementów nośnych, które umożliwiają instalację przewodu jezdnego poziomo w stosunku do toru. Sieć trakcyjna jest złożonym systemem mechanicznym i elektrycznym, który musi zapewnić właściwe przekazywanie energii elektrycznej do pojazdu trakcyjnego. W trakcie eksploatacji urządzeń sieci trakcyjnej (wysięgniki, wsporniki, urządzenia napinające itp.) pojawiają się różne problemy znacząco wpływające na ruch kolejowy. Ponadto przestarzałe konstrukcje utrudniają ich montaż i codzienną eksploatację. Przedstawiono wyniki badań, analizy numeryczne właściwości naprężeń, eksperymentalne wyniki relaksacji siły nacisku i odporności na korozję urządzeń sieci trakcyjnej w obecnie używanych urządzeniach. Opracowano koncepcję sieci trakcyjnej nowej generacji. Przeprowadzono badania rozkładu naprężeń i współczynnika bezpieczeństwa na konstrukcjach obciążonych eksploatacyjnie. Uzyskane wyniki pokazały, że obecnie używane urządzenia przy obciążeniu eksploatacyjnym pracują blisko granicy wytrzymałości materiału. Badane elementy miały również wady projektowe, niską odporność na korozję i odporność reologiczną na poziomie 8–10% stopnia relaksacji. Wykonane prace przeprowadzone w obciążeniu eksploatacyjnym wykazały, że nowo zaprojektowane elementy mają bezpieczny poziom naprężenia efektywnego i wysoki współczynnik bezpieczeństwa. Zaprojektowano, przetestowano i zbadano nowe rozwiązanie urządzenia naprężającego bez ciężarów naprężających. Siła naprężenia przewodu jezdnego i sieci trakcyjnej jest generowana przez spiralne sprężyny urządzenia. Użycie właściwie zaprojektowanych elementów – krzywek, pozwala uzyskać stałą siłę naprężającą przewodu jezdnego w całej długości przęsła naprężenia.
Źródło:
Problemy Kolejnictwa; 2016, 171; 39-50
0552-2145
2544-9451
Pojawia się w:
Problemy Kolejnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improving the Control Method of Energy Losses in Contact Line
Udoskonalenie metody kontroli strat energii elektrycznej w sieci trakcyjnej
Autorzy:
Kirilyuk, T. I.
Powiązania:
https://bibliotekanauki.pl/articles/215386.pdf
Data publikacji:
2015
Wydawca:
Instytut Kolejnictwa
Tematy:
overhead contact system
power supply system
electrical energy loses
mathematical model
sieć trakcyjna
systemy zasilania
straty energii elektrycznej
model matematyczny
Opis:
Purpose. Today energy losses in contact line are determined by calculation, but this method gives approximate values. It is proved that it is more effective control of the energy losses in contact line using indirect methods, but existing methods give the error of 7,5%. It is necessary to improve the control method of energy losses in contact line by taking into account additional factors. Methods. The method of integral and matrix calculus used to develop a mathematical model for determining energy losses coefficient. Theory of experiment planning used for development a regression. The Results. Regression equations of the second order for determining energy losses coefficient for areas of direct and alternating currents were received on the basis of full factorial experiment. Character of energy losses coefficient was defined, the limits of its changes were set and recommendations of its regulations were provided on the basis of the Monte Carlo method. An experimental confirmation of the results was done. It showed that the proposed improved method reduces error in the determination of energy losses. Scientific novelty. For the first time, an analytical expression for estimating energy losses coefficient, which takes into account the number of trains on the zone between traction substations was found. This allows determining energy losses in contact line more accurately. First established the law of the statistical distribution of the energy losses coefficient, which makes it possible to evaluate its limits and advice on regulations change it. Practical significance. The method of determination of the loss factor, which takes into account additional factors was found. This makes it possible to reduce the taking into account error of loss of 2,1% as compared with the existing indirect method.
Cel: Obecnie pomiary strat w sieci trakcyjnej dokonywane są szacunkowo, jednak ten sposób pozwala uzyskać tylko przybliżone wyniki. Udowodniono, że bardziej efektywne jest kontrolowanie strat energii elektrycznej w sieci trakcyjnej za pomocą metod pośrednich, jednak istniejące metody dają wynik z błędem rzędu 7,5%. Niezbędne jest udoskonalenie metody kontroli strat energii w sieci trakcyjnej z uwzględnieniem dodatkowych czynników. Metodyka: Przy opracowaniu matematycznego modelu do określenia współczynnika strat wykorzystano metody rachunku całkowego i macierzowego. Do opracowania zależności regresji wykorzystano teorię planowania eksperymentu. Wyniki: Na podstawie pełnego doświadczenia czynnikowego, uzyskano równania regresji drugiego rzędu do określenia współczynnika straty energii na odcinkach z prądem stałym i prądem zmiennym. Na podstawie metody Monte Carlo określono charakter współczynnika straty energii, ustalono limit zmian i przedstawiono zalecenia dotyczące jego regulacji. Przedstawiono doświadczalne potwierdzenie uzyskanych wyników, które pokazało, że zaprezentowana udoskonalona metoda zmniejsza błąd pomiaru strat energii elektrycznej. Innowacyjność: Po raz pierwszy uzyskano wyrażenie analityczne do określenia strat energii elektrycznej w sieci trakcyjnej, z uwzględnieniem liczby pociągów pomiędzy stacjami trakcyjnymi. Po raz pierwszy sformułowano prawo rozkładu prawdopodobieństwa współczynnika strat energii elektrycznej, które umożliwia ocenę jego granic i proponuje zmianę metodyki. Znaczenie praktyczne: Opracowano metodykę określenia współczynnika strat uwzględniającą dodatkowe czynniki. Daje to możliwość zmniejszenia błędu wyliczenia straty o 2,1% w porównaniu z istniejącą metodą pośrednią.
Źródło:
Problemy Kolejnictwa; 2015, 166; 49-62
0552-2145
2544-9451
Pojawia się w:
Problemy Kolejnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
TSI Energy 2015 – Reference Parameters for Overhead Contact Lines
TSI Energia 2015 – parametry referencyjne dla sieci trakcyjnej
Autorzy:
Nickel, T.
Puschmann, R.
Powiązania:
https://bibliotekanauki.pl/articles/214863.pdf
Data publikacji:
2017
Wydawca:
Instytut Kolejnictwa
Tematy:
overhead contact line
interoperability
technical specification of interoperability
energy subsystem
conventional railway
high-speed railway
mechanical kinematic gauge of pantograph
electrical kinematic gauge of pantograph
sieć trakcyjna
interoperacyjność
techniczna specyfikacja dla zapewnienia interoperacyjności w podsystemie energetycznym
koleje konwencjonalne
koleje dużych prędkości
mechaniczna skrajnia kinematyczna pantografu
elektryczna skrajnia kinetyczna pantografu
Opis:
The useable contact wire lateral position, determined in accordance with TSI ENE 2015 and EN 15273, based on the displacement of the pantograph in relation to the track axis, may be reduced by 16%. This reduced lateral position results in up to 8 m shorter span lengths for DB’s standard contact line types and, therefore, in increased capital costs. The reasons are the reference parameters for the lateral displacement of vehicles, established for the determination of the infrastructure gauge, also provide for vehicle inclination on straight tracks, to improve reliability. These reference parameters have been empirically derived from conditions in existing railway infrastructure. However, for new installations these provisions are not necessary. The TSI Energy 2015 should be corrected such that contact line designs with proven performance over long periods can also be used in the future.
Użytkowany obszar poprzecznego położenia przewodu jezdnego, określony zgodnie z TSI ENE 2015 i EN 15273, na podstawie przesunięć pantografu względem osi toru, może być może być zmniejszony t o 16%. Zredukowanie tego obszaru skutkuje skutkuje krótszą nawet o 8 m rozpiętością typowych przewodów jezdnych użytkowanych w DB, a tym samym zwiększeniem kosztów inwestycji. Powodem są parametry odniesienia w stosunku do poprzecznego przesunięcia pojazdu ustanowione dla określenia skrajni infrastruktury, także dla nachylenia pojazdu na prostym torze w celu zapewnienia stabilności. Zakresy referencyjne uzyskano doświadczalnie w warunkach istniejącej infrastruktury kolejowej. Jednakże dla nowych instalacji te warunki nie są niezbędne. Specyfikacja TSI Energia 2015 powinna być poprawiona tak, aby przewody jezdne sprawdzone w długim okresie mogły być także używane w przyszłości.
Źródło:
Problemy Kolejnictwa; 2017, 174; 53-58
0552-2145
2544-9451
Pojawia się w:
Problemy Kolejnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Technical Specification Energy 2015 – Harmonized Design of Overhead Contact Lines
Techniczna specyfikacja Energia 2015 – zharmonizowany projekt sieci trakcyjnych
Autorzy:
Nickel, T.
Puschmann, R.
Powiązania:
https://bibliotekanauki.pl/articles/215652.pdf
Data publikacji:
2017
Wydawca:
Instytut Kolejnictwa
Tematy:
overhead contact line
interoperability
technical specification of interoperability
energy subsystem
conventional railway
high-speed railway
mechanical kinematic gauge of pantograph
electrical kinematic gauge of pantograph
supplements of Technical Specification for Interoperability of Energy subsystem
sieć trakcyjna
interoperacyjność
techniczna specyfikacja dla zapewnienia interoperacyjności w podsystemie energetycznym
koleje konwencjonalne
koleje dużych prędkości
mechaniczna skrajnia kinematyczna pantografu
elektryczna skrajnia kinetyczna pantografu
suplement do technicznej specyfikacji dla zapewnienia interoperacyjności w podsystemie energetycznym
Opis:
The Technical Specification for Interoperability of the Energy subsystem of the railway systems in the European Union was published in December 2014. This Technical Specification came into force on January 1, 2015 and replaced the individual Technical Specifications for the interoperability of conventional and high-speed railway systems in force to date. The document stipulates detailed rules for the design of the mechanical-kinematic gauge of the pantograph and the maximum lateral deviation of contact wires. The harmonized stipulations result in planning data for contact lines which differ from design values obtained previously. Furthermore the article identifies necessary supplements for the next Technical Specification for Interoperability of Energy subsystem.
W grudniu 2014 roku opublikowano Techniczne specyfikacje interoperacyjności podsystemu „Energia” systemu kolei w Unii. Specyfikacja weszła w życie od 1 stycznia 2015 roku i zastąpiła dotychczasowe specyfikacje dotyczące kolei konwencjonalnych i kolei dużych prędkości. Dokument określa szczegółowe zasady projektowania mechanicznej skrajni kinematycznej pantografu i maksymalne odchylenie poprzeczne przewodu jezdnego. Zharmonizowane postanowienia skutkują planowaniem danych dla przewodów trakcyjnych, które różnią się od wcześniej projektowanych uzyskiwanych wartości. Ponadto, artykuł określa niezbędne suplementy do kolejnej technicznej specyfikacji dla zapewnienia interoperacyjności systemu energetycznego.
Źródło:
Problemy Kolejnictwa; 2017, 174; 59-73
0552-2145
2544-9451
Pojawia się w:
Problemy Kolejnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies