Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "temperatura wody" wg kryterium: Temat


Wyświetlanie 1-12 z 12
Tytuł:
Temperatura i zasolenie przydennych warstw wody w zatokach fiordu Hornsund (SW Spitsbergen)
Temperature and salinity of bottom waters in bays of the Hornsund fjord (SW Spitsbergen)
Autorzy:
Wiśniewska-Wojtasik, B.
Powiązania:
https://bibliotekanauki.pl/articles/260852.pdf
Data publikacji:
2005
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Hornsund
wody przydenne
temperatura wody
zasolenie wody
gęstość wody
bottom waters
water temperature
salinity of waters
density of water
Opis:
Obszary wewnętrznych zatok fiordu Hornsund stanowią zróżnicowane i podlegające dynamicznym zmianom środowisko. Badania nad temperaturą i zasoleniem zatok Hornsundu nie były dotychczas prowadzone systematycznie, ponadto koncentrowały się głównie na centralnej części fiordu. W pracy przedstawiono dane pomiarowe temperatury i zasolenia warstwy wody przydennej z dwóch sezonów letnich (2000 i 2002 r.) dla wybranych zatok przylodowcowych Hornsundu oraz przeprowadzono porównanie uzyskanych wyników. Stwierdzono zaznaczające się w tym okresie silne ocieplenie i wzrost zasolenia wód przydennych. Silne ocieplenie wód przydennych zaznaczyło się również w dłuższej skali czasowej (ostatnie 20-30 lat). Dane zebrano podczas prowadzenia prac związanych z badaniami zgrupowań meiobentosu zasiedlających zatoki fiordu.
The Hornsund fjord is located in the southwest part of Spitsbergen. This part is situated in the area of dynamic changes because of two periodically upcoming flows of water, warm West Spitsbergen current and cold East Spitsbergen current. These currents are changeable by means of their specific activities due to variable flow of some waters to the fjord that occur seasonally as well as in many years time. The changeability of physico-chemical conditions of the fjord waters have been monitored for many years by terms of warm years as well as seasonally. Despite of thorough literature conveying the issue of physico-chemical conditions of Isbjornhamna's waters there is not sufficient pieces of information tackling with some conditions that are in numerous bays in the depth of Hornsund fjord. During the biological research in Hornsund concerning inner bays in July of 2000 and 2002 year the measurement of temperature, salinity and conductivity of bottom layers of water were made. The research included the following bays: Brepollen by the forehead of Horn glacier, Hyrne glacier, Mendelejew glacier, by the eastern side of Treskelen peninsula, Samarinvagen, Adriabukta, Austre Burgerbukta, Gashamna and Isbjornhamna. The conducted analysis were done for the water layers that lie 1 meter over the bottom. The research was being done was that moment of intensive flows of glacier waters. The measurement were repeated in 2002, moreover almost for the same positions. When the research was being conducted the Hornsund fjord was under the influence of warm waters on the surface by West Spitsbergen current, according the analysis of the data of surface waters taken by NOAA-CIRES Climate Diagnostics Centre. As a result of the analysis conducted some great variability of water temperature and salinity for some bays and profiles has been found. For the given positions almost similar values were found by means of two research series (2000 and 2002). The results show indicate to the variability of water layers lied in the given glacier bays. The rise of temperature of bottom waters both in Isbjornhamna and Brepollen that has been noticed during the period of 20-30 years indicates constant warming. The results of various research as well as the conclusions about the long-term lasting warming of the bottom waters available from literature can provide evidence that during the period of 20-30 years there is a change of intensity of West Spitsbergen current. Thus there is a significant change and conversion of water mass filled Hornsund.
Źródło:
Problemy Klimatologii Polarnej; 2005, 15; 155-167
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zlodzenie Hornsundu i jego przedpola (SW Spitsbergen) w sezonie zimowym 2007/2008
Ice conditions in Hornsund and its foreshore (SW Spitsbergen) during winter season 2007/2008
Autorzy:
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260675.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
lód morski
sezon lodowy
temperatura wody morskiej
Hornsund
Spitsbergen
sea ice
sea surface temperature
Opis:
W sezonie zimowym 2007/2008 przebieg zlodzenia Hornsundu był odmienny od przeciętnego. Od października do lutego średnia miesięczna temperatura powietrza była o 2,6–6,1 deg wyższa, a w marcu o 2,5 deg niższa od średniej klimatycznej (1978-2006). Ujemna temperatura wody powierzchniowej przy brzegu Isbjorn-hamny występowała od 29 X 2007 do 20 V 2008 r. Najniższe (–1,9°C) wartości temperatury wody mierzono od trzeciej dekady listopada 2007 r. do końca kwietnia 2008 r. Latem i jesienią (VIII-X) 2007 r. dochodziło do inten-sywnego obłamywania się lodu lodowcowego, który okresowo tworzył zwarte skupienia growlerów i gruzu lodow-cowego wzdłuż brzegu. W Isbjornhamnie pierwszy okres tworzenia się lodu morskiego miał miejsce między 31 października a 12 grudnia 2007 r. (lepa lodowa, krążki lodowe), drugi – od 26 grudnia 2007 r. do 22 maja 2008 r. Na przedpolu Hornsundu dryfujący lód allochtoniczny pojawił się w pierwszych dniach grudnia 2007 r. Od połowy lutego do trzeciej dekady kwietnia prawie cała powierzchnia Hornsundu pokryta była lodem dryfującym o zmiennej zwartości. Na osiowej partii fiordu lód autochtoniczny zanikł po 28 kwietnia 2008 r. Maksymalna wysokość wału lodu nabrzegowego w Isbjornhamnie osiągnęła 2,5 m.
This article presents the development of sea ice cover in the waters of central and western part of the Hornsund Fjord, as well as in its foreshore during winter season 2007-2008. Due to long lasting (November-February) high air temperatures (Fig. 2-3) the sea ice cover development of Hornsund was different from the average one. Significant decrease in air temperature was observed in March (mean monthly –13.4°C) and April (mean monthly –9.3°C). In such thermal conditions the maximum thickness of sea ice which might have been formed in the outer, sheltered from high seas areas of the fjord, estimated with the help of Zubov formula, could reach 41cm in January, 52cm in February, 71cm in March, up to 82–84cm in the period from April to May 2008 (Tab. 1). In summer and autumn (August-October) 2007 only brash glacier ice and small icebergs broken off the glaciers endings on the sea in Hornsund drifted in the waters of the fjord. At this time brash glacier ice and growlers broken off the Hans Glacier periodically concentrated densely along the coast of Isbjorhamna. The first forms of new ice (slush and grease ice as well as shuga) were observed close to the west coast of Isbjornhamna from 31th October till 12rd December (Fig. 8). The second period of sea ice formation started on 26th December. Not sooner than in the middle of March when severe frost was noted, a permanent ice cover was formed (young ice). Fast ice was only observed in the internal waters of Hornsund, in the Brepollen, Burgerbukta, Samarinvagen, Adria and Isbjornhamna bays. From the first decade of February till the 3th July the ice cover of Hornsund experienced large fluctuations (Fig. 11-12, 14-17). During that period the entire area of Hornsund was covered with sea ice a few times. The first this phenomenon was noted from 7th till 20th February 2008 when the allochtonic ice drifting in the waters of the Sorkapp Current entered western and central part of the fjord and when the central and inner parts were covered with ice formed in situ (Fig. 11-12). The second this phenomenon was noted from the third decade of March till the end of April when the all surface of Hornsund were covered autochthonous ice. On the western and central part of the fjord this was young ice and nilas. In the internal waters of Hornsund was observed first-year ice (Fig. 14-15). This sea ice cover was several times destroyed by very strong east winds causing that most of ice was moved outside the fjord. At the end of April strong E and SE winds caused ice removal from the axial part of Hornsund. Later, apart from three short episodes (5-8 May, 15-22 May and 1-9 July) when strips of allochtonic ice entered west and central part of the fjord (Fig. 16-17), only single floes of broken-off the fast ice from Brepollen, Burgerbukta and Samarinvagen drifted in the waters of Hornsund. The ice season 2007-2008 ended on 9th July when the last floes of very rotten ice were observed drifting from the inside of the fjord with the tidal stream to its foreshore.
Źródło:
Problemy Klimatologii Polarnej; 2009, 19; 247-267
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zlodzenie Hornsundu i wód przyległych (Spitsbergen) w sezonie zimowym 2010-2011
Ice conditions in Hornsund and adjacent waters (Spitsbergen) during winter season 2010-2011
Autorzy:
Kruszewski, G.
Powiązania:
https://bibliotekanauki.pl/articles/260971.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
lód morski
temperatura wody morskiej
Hornsund
Spitsbergen
sea ice
ice season
sea surface temperature
Opis:
Sezon lodowy 2010/2011 zaczął się w połowie października. Pierwsze postacie autochtonicz-nego lodu morskiego zaobserwowano w strefie brzegowej Isbjornhamny 15.10. po spadku dobowej temperatury powietrza poniżej poziomu temperatury zamarzania wody morskiej. Zbliżone do średnich wieloletnich wartości temperatury powietrza okresu listopad – styczeń sprzyjały tworzeniu się lodu w strefie brzegowej Hornsundu. Lód morski o zwartości do 4/10 pojawił się w Hornsundzie w końcu października i utrzymywał w listopadzie. Prze-bieg warunków lodowych w rejonie południowego Spitsbergenu – zbliżony do normalnego z wielolecia – umoż-liwiał napływ lodu do fiordu z zewnątrz od połowy grudnia. W tym też okresie w wewnętrznych partiach fiordu zaczął się formować lód stały brzegowy, którego pokrywa w sposób ciągły występowała w N części Brepollen do końca drugiej dekady lipca 2011 (około 7 miesięcy). W okresie maksymalnego rozwoju (druga dekada lutego) lód stały lub całkowicie zwarty pokrywał około 2/3 powierzchni fiordu.
This paper presents the ice conditions in the Hornsund Fjord (Svalbard) during expedition season 2010/2011. Sea ice season started in the mid of October, after clear air temperature drop (Fig. 2). Since this time forms of locally formed ice were present, mainly in coastal zone. To the end of November concentration of ice did not exceed 4/10 (very open drift ice). Close to mean thermal conditions in Hornsund area during winter months (Fig.1, Tab. 1) were favourable for ice development in this region. Theoretical sea ice thickness at the end of the Year 2010 could reach about 50 cm, and close to 1 m at the end of ice season. Close and very close pack ice (7-10/10) drifting outside the fjord were present since December (Fig. 7). Easternmost inner part of the Hornsund was covered by fast (consolidated) ice since mid of December to the mid of July 2011. During its maximum development in February fast ice covered over 70% of Hornsund area. Close and very close pack ice were present at Hornsund waters in January, February, three weeks of March, second half of April and first week of May – all together over three and half months. Periods of time with smaller ice concentration were connected with strong easterly air circulation. In May and June ice concentration in SW Svalbard area decrease significantly. Last two episodes the very close ice pack flowed into the Hornsund took place in first days and in second half of July 2011 (Fig. 8).
Źródło:
Problemy Klimatologii Polarnej; 2012, 22; 69-82
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zlodzenie Hornsundu (Spitsbergen) w sezonie zimowym 2008/2009
Ice conditions in Hornsund (Spitsbergen) during winter season 2008-2009
Autorzy:
Kruszewski, G.
Powiązania:
https://bibliotekanauki.pl/articles/261047.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
lód morski
sezon lodowy
temperatura wody morskiej
Hornsund
Spitsbergen
sea ice
ice season
sea surface temperature
Opis:
Sezon lodowy 2008/2009 zaczął się w trzeciej dekadzie października, przy czym spadki temperatury powietrza poniżej zera notowano od końca września. Na wodach fiordu w okresie lipiec – wrzesień odnotowywano jedynie postacie lodu lodowcowego. Dopiero spadki temperatury w listopadzie umożliwiły two-rzenie się lodu autochtonicznego w strefie brzegowej. W tym samym czasie do fiordu zaczął okresowo napływać także lód dryfujący z Prądem Sorkapskim. Pokrycie fiordu lodem o dużej zwartości wystąpiło w kilku epizodach, przerywanych kilkudniowymi aktami przynajmniej częściowego odpływania lodu z Hornsundu. Zwarty i bardzo zwarty lód występowała na praktycznie całej powierzchni fiordu w drugiej dekadzie grudnia, pierwszej i drugiej stycznia, lutym, marcu, pierwszej połowie kwietnia i przez kilka dni w maju. Stała pokrywa lodowa utworzyła się poza Isbjornhamną jedynie w skrajnie wschodniej części fiordu, gdzie pod Brepollen przetrwała do pierwszych dni lipca.
This paper presents the sea ice development in the waters of Hornsund Fjord during winter season 2008/2009. In autumn 2008 only brash glacier ice, growlers and bergy bits were present in Hornsund, especially along the coast. Sea ice season started at end of October. Since this time forms of new ice were formed in coastal zone of Isbjornhamna. Because of mild thermal conditions in November and December (Fig. 2, 3) the maximum theoretical ice thickness in inner parts of the fjord could reach 43 cm at the end of the year 2008 (Table 1). In January young coastal ice was formed in Isbjornhamna. Consolidation of close pack ice coming from outside the Hornsund was interrupted few times by increase in air temperature and strong easterly winds, blowing the ice outside again. In the inner bays consolidation of pack ice started probably at end of February. Eastern part of the Hornsund was covered by fast ice since mid of March to the end of June 2009 (Brepollen, Samarinvagen). For over 16 weeks close and very close young pack ice drifted in the Hornsund waters. At the end of April ice concentration in fjord and outside decrease significantly and part of fast ice was broken and removed too. Last episode the Hornsund was covered by very close pack ice drifting from outside took place from 15th till 25th May.
Źródło:
Problemy Klimatologii Polarnej; 2010, 20; 187-196
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Związki między temperaturą wody w energoaktywnej strefie Morza Bellingshausena a temperaturą powietrza na Stacji Arctowskiego
Correlations between the water temperature in energy-active zone of the Bellingshausen Sea and the air temperature at the Arctowski Station
Autorzy:
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260963.pdf
Data publikacji:
1998
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatura wody
temperatura powietrza
Szetlandy Południowe
Stacja Arctowskiego
anomalia TPO
water temperature
air temperature
Arctowski Station
South Shetland
SST anomalies
Opis:
The main task of this paper is to explain if there is an energy-active sea zone in the vicinity of the South Shetland Islands and the Antarctic Peninsula which controls changes in atmospheric circulation in this area. The analysis made by use of the data comprising information about mean monthly sea surface temperatures (later SST) and SST anomalies in 2 x 2° grids - GEDEX and data about mean monthly air temperatures taken at the Arctowski Station (Meteorological Yearbooks of the Arctowski Station). Common data spanned the period from January 1982 to April 1992. The first stage of this work was to find so called .active grids", i.e. grids of bigger influence of ocean surface on thermic regime of distant areas. In order to do that an analysis of changes in SST in parts of the South Ocean comprising the Bellingshausen Sea, the Drake Strait, the Scotia Sea and the boundary between the Scotia Sea and the Weddell Sea was carried out. The analysis resulted in a conclusion that three grids situated 80oW: 56°,60° and 64°S show the larger relation with the flow of air temperature at the Arctowski Station. There are synchronic and asynchronic correlations between SST anomalies and the air temperature in nominated grids of the Arctowski Station. The results of analysis of synchronic correlations have been presented in table l. Asynchronic correlations are of complicated nature and distributions. Most numerous simple correlations were reported to occur between the temperature at the Arctowski Station and SST Anomalies in grids [80°W, 64°S]. The largest correlations are those with anomalies occurring in January, February and March. They can be observed in the air temperature with 11-13 months delay. The combined correlations are multiple correlations between regression equation of synchronically occurring anomalies (AN) in those grids and the air temperature at the Arctowski Station (ARC) in consecutive months (1, 2, 3, ..., n, n + 1, n + 2); ARC_n = a + b AN[80.56]_n + c AN[80.60]_n + d AN[80.64]_n. Table 2 contains set of multiple correlation coefficients and those which are likely to be significant have been marked. It has been stated that SST anomalies at 800W in March correlate with monthly air temperatures at the end of summer the following year (February and March) at the Arctowski Station and with temperatures of the early and midwinter of the following year (May, June, July).The variation in SST anomalies in March explains 88% - 69% of variance of variation in the air temperature in June and in July of the following year at the Arctowski Station (fig. l). The response of the air temperature to the occurrence of SST anomalies in October at 800W is much faster - from one to five months. Large correlation between the air temperatures at the Arctowski Station and SST anomalies can be observed already in December of the same year and in January, March and April in the following year (fig. 2). The above stated facts lead to conclusion that the distribution of SST does not influence the flow of the air temperature in a continuous way. Future variations in the air temperature are influenced by the states of thermal field of water measured at crucial moments (the end of summer and the end of winter). They are the states, which later on are slowly modified by processes of radiation in-and off flow, wind chilling and dynamic processes active in the ocean (heat advection following the mass advection). Thus a thesis can be stated that the SST anomalies occurring in grids 56°, 600 and 64°S. 800W may serve as predictive values to work out long term prognosis of the air temperature at the Arctowski Station. These prognosis can be divided into "early" prognosis with 2-6 months' advance (equations 1-4) and "distant" prognosis with 11-18 months' advance (equations 5-8). The above mentioned equations explain about 91% to 52% of variations in the mean monthly air temperature at the Arctowski Station. The presented facts indicate that there really is energy-active zone in the Bellingshausen Sea. Chapter 6 in 4 points shows how the hypothetical mechanism works. It can be understood and explained in a similar way as in case of the Labrador Sea and the New Foundland region (Marsz 1997). The analysis of synchronic statistical correlations between the air temperature at the Arctowski Station and the distribution of SST anomalies at 80°W indicates, among others, the presence of the mechanism described in Chapter 6. Such correlations have been analysed and discussed in a detailed way for April (fig. 3, equations 9 and l0) and for July (fig. 4, equation 11).
Źródło:
Problemy Klimatologii Polarnej; 1998, 8; 25-46
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zlodzenie Hornsundu (Spitsbergen) w sezonie zimowym 2009-2010 (SW Spitsbergen)
Ice conditions in Hornsund (Spitsbergen) during winter season 2009-2010 (SW Spitsbergen
Autorzy:
Kruszewski, G.
Powiązania:
https://bibliotekanauki.pl/articles/260995.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
lód morski
sezon lodowy
temperatura wody morskiej
Hornsund
Spitsbergen
sea ice
ice season
sea surface temperature
Opis:
Sezon lodowy 2009/2010 zaczął się pod koniec października. Pierwsze postacie autochtonicznego lodu morskiego zaobserwowano w strefie brzegowej Isbjornhamny dopiero 26 października. Spadki dobowej temperatury powietrza poniżej zera sporadycznie notowano od połowy września, jednak dopiero w końcu października obniżyła się ona do poziomu temperatury zamarzania wody morskiej. Wyraźnie wyższe od średnich wieloletnich wartości temperatury powietrza okresu październik - luty nie sprzyjały tworzeniu się lodu. Wyjątkowo łagodne warunki lodowe w rejonie południowego Spitsbergenu uniemożliwiały napływ lodu z zewnątrz aż do początków stycznia 2010. Lód morski o większej zwartości pojawił się w Hornsundzie w zasadzie dopiero po wyraźnym spadku temperatury w marcu. Dochodziło wtedy do całkowitego pokrycia fiordu lodem, włącznie z tworzeniem się w zatokach wewnętrznych lodu stałego. Pokrywa lodu stałego utrzymywała się we wschodniej części fiordu, w fazie maksymalnego rozwoju (od połowy marca do połowy kwietnia) pokrywając od połowy do blisko całej jego powierzchni. W skrajnie wschodniej partii fiordu pod Brepollen przetrwała do końca czerwca.
This article presents the sea ice development in the waters of Hornsund Fjord during winter season 2009/2010. Due to long lasting (November-February) high air temperatures (Fig. 1-2) during autumn 2009 mainly brash glacier ice, growlers and bergy bits were present in Hornsund, especially along the coast. Since end of October forms of new ice were observed in coastal zone of Isbjornhamna. In beginning of January first allochtonic drifting ice entered western part of the fjord. First in situ formed pancake ice was observed in coastal zone in February (Fig. 4). During this month young coastal ice was formed in inner bays of the fjord. Significant decrease in air temperature observed in March was connected with ice development (Fig. 5) on whole fjord area. In eastern part the 'autochtonic' fast ice was formed, in western consolidation of drifting ice occurred. The whole area of Hornsund was covered with fast ice for about two weeks. In eastern part of the fjord (Brepollen, Burgerbukta, Samarinvagen) fast ice existed even in June, with maximum thickness 70-80 cm. Last forms of fast ice was destroyed in first days of July in NE part of Brepollen. In April and May close pack ice drifting outside the Hornsund entered few times the central parts of the fjord, but because of mild temperature conditions consolidation did not start. Usually concentration of ice in central part of the fjord was smaller than outside and do not exceed 4-6/10 (open drift), because of prevailing easterly winds, blowing the ice outside. Such a situation existed since end of March for next six weeks. The last short episode the strips of allochtonic ice entered central part of the fjord took place in beginning of May (Fig. 7).
Źródło:
Problemy Klimatologii Polarnej; 2011, 21; 229-239
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany temperatury wody powierzchniowej na morzach Arktyki Rosyjskiej i ich konsekwencje dla żeglugi na Północnej Drodze Morskiej (1979-2016)
Changes of sea surface temperature in the Russian Arctic Seas and their implications for shipping in the Northern Sea Route (1979-2016)
Autorzy:
Styszyńska, A.
Pastusiak, T.
Powiązania:
https://bibliotekanauki.pl/articles/260798.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatura wody powierzchniowej
zmiany temperatury wody
Północna Droga Morska
Arktyka Rosyjska
sea surface temperature
changes in water temperature
Northern Sea Route
Russian Arctic
Opis:
Praca omawia zmiany średniej miesięcznej temperatury wody powierzchniowej na morzach Arktyki Rosyjskiej w latach 1979-2016. Stwierdzono, że w badanym okresie następował powolny wzrost temperatury wody. Jednakże tylko na Morzu Barentsa był on istotny statystycznie we wszystkich miesiącach roku, a w SW części Morza Karskiego oraz w zachodniej części Morza Czukockiego w okresie od czerwca do grudnia. W analizowanym 38.leciu największy wzrost temperatury wody powierzchniowej miał miejsce na Morzu Wschodniosyberyjskim (+0,57°C/10 lat w sierpniu i +0,44°C/10 lat we wrześniu) oraz w SW części Morza Karskiego w lipcu (+0,53°C/10 lat). W dalszym ciągu na wszystkich morzach, poza Morzem Barentsa, do czerwca włącznie temperatura wody ma wartości niższe od temperatury jej zamarzania przy swoistym dla danego morza zasoleniu. Najpóźniej temperaturę zamarzania osiągają wody Morza Barentsa gdzie w ostatniej dekadzie (2006-2015) na podejściu do północnego wejścia na PDM rzadko kiedy temperatura wody spadała poniżej temperatury zamarzania oraz wody Morza Czukockiego (w grudniu). Oznacza to, że statki pokonujące PDM w listopadzie będą miały szansę przepłynąć ją po „czystej” wodzie lub w cienkich, młodych lodach, które dla współczesnych statków nie stanowią większego zagrożenia.
The paper discusses changes of the mean monthly sea surface temperature on the Russian Arctic seas in the years 1979-2016. It was found that during the period under investigation there was a slow increase in water temperature. However, only in the Barents Sea it was statistically significant in all months of the year, and in the SW part of the Kara and western Chukchi seas from June to December. In the analyzed 38 years the highest rise in surface water temperature was recorded in the East Siberian Sea (+0.57°C/decade in August and +0.44°C/decade in September) and in the SW Kara Sea in July (+0.53°C/decade). Still on all these seas, except for the Barents Sea, until June inclusive, the water temperature was lower than its freezing temperature for a particular salinity specific for the sea. At the latest, freezing temperatures reached the waters of the Barents Sea, where in the last decade (2006-2015) at the approach to the north entrance of the Northern Sea Route (NSR) rarely water temperature has fallen below the freezing point. At the same time, the Chukchi Sea waters reached freezing temperatures in December. This means that vessels sailing through the NSR in November will have the chance to pass it through "ice free" water or in thin, young ice, which for modern ships is not a major threat.
Źródło:
Problemy Klimatologii Polarnej; 2016, 26; 165-177
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Współczesne zmiany powierzchni lodów morskich na wodach wokółantarktycznych - problemy i niejasności
Contemporary changes in the sea ice extent in the waters surrounding the antrctica - problems and ambiguities
Autorzy:
Marsz, A. A.
Powiązania:
https://bibliotekanauki.pl/articles/261017.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
lody morskie
trendy
temperatura wody powierzchniowej
temperatura powietrza
zmiany klimatu
fale długie
Antarktyka
Antarctic
sea ice
trends
SAT
long wave
climate change
SST
Opis:
Praca charakteryzuje trendy zmian powierzchni zlodzonej na wodach wokółantarktycznych w latach 1979-2010. Stwierdza się występowanie dodatniego trendu rocznego powierzchni zlodzonej (+15.6ź103 km2źrok-1) o wysokiej istotności statystycznej (p < 0.001). Dodatnie trendy występują we wszystkich miesiącach roku, z tego trendy te są statystycznie istotne w okresie od maja do października. Najsilniejsze trendy dodatnie występują w okresie rozrastania się pokrywy lodowej (marzec-lipiec). W ujęciu regionalnym w czterech z pięciu sektorów Antarktyki trendy są dodatnie, z czego tylko w jednym – sektorze Morza Rossa – trend jest istotny statystycznie, w jednym sektorze (mórz Amundsena i Bellingshausena) – występuje statystycznie istotny trend ujemny. Analiza przyczyn występowania dodatniego trendu powierzchni zlodzonej na wodach wokółantarktycznych, pozwala wskazać jako główną przyczynę rozrostu pokrywy lodowej cyrkulację atmosferyczną. Te same procesy cyrkulacyjne są przyczyną zarówno ogólnego wzrostu powierzchni lodów na wodach wokółantarktycz-nych, jak jednoczesnego jej spadku w rejonie Morza Bellingshausena i wzrostu temperatury powietrza nad Półwyspem Antarktycznym. Zmiany cyrkulacji atmosferycznej następują pod wpływem zmian zasobów ciepła w SW części subtropikalnego Pacyfiku (~30°N, 170-160°W), które wymuszają zwiększoną lub zmniejszoną powtarzalność lokowania się górnego klina na długości geograficznej Morza Rossa i górnej zatoki na pograniczu mórz Amundsena i Bellingshausena. Zmiany temperatury wody powierzchniowej w tym rejonie objaśniają około 28% międzyrocznej zmienności rocznej powierzchni zlodzonej na wodach wokółantarktycznych, występujący w niej trend dodatni, spadek powierzchni zlodzonej na Morzu Bellingshausena i wzrost temperatury powietrza w rejonie Półwyspu Antarktycznego.
This work describes trends in changes in sea ice extent in the waters in the vicinity of the Antarctica in the years 1979-2010. A positive trend in the annual ice extent (+15.6ź103 km2źyear-1) with high statistical significance (p <0.001) was observed. Positive trends occur in all months of the year and statistically significant trends are noted in the period from May to October. The strongest positive trends occur in the period when ice cover grows (March-July). Regionally, in four out of the five sectors of the Antarctica, trends are positive but only in one - the Ross Sea sector - the trend is statistically significant and in one sector (the Amundsen and Bellingshausen seas) there is a statistically significant negative trend. Analysis of the causes of the positive trend in the sea ice extent indicates that the primary role in the growth of ice extent is attributed to atmospheric circulation. The same circulation processes are responsible for both an overall increase in the ice extent in the region of the Antarctica and in the simultaneous decrease in the ice extent in the Bellingshausen Sea and the growth in air temperature over the Antarctic Peninsula. Changes in atmospheric circulation are influenced by heat resources in the south-western part of the subtropical Pacific (~ 30°N, 170-160°W). These heat resources cause that the same location of the upper ridge of high pressure at the Ross Sea longitude and the upper trough on the border of the Amundsen and Bellingshausen seas is repeated more or less frequently. SST changes in this region explain about 28% of the interannual variability of annual sea ice extent in the area of the Antarctic waters. They also explain the positive trend noted there and the decline in sea ice extent in the Bellingshausen Sea and increase in the air temperature in the region of the Antarctic Peninsula.
Źródło:
Problemy Klimatologii Polarnej; 2011, 21; 7-38
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ zmian temperatury wody na Prądzie Zachodniogrenlandzkim na zmiany temperatury powietrza na Ziemi Baffina i Labradorze (1982-2002)
The influence of the changes of water temperatures on the West Greenland Currents in relays of air temperature on Baffin Island and Labrador (1982-2002)
Autorzy:
Zblewski, S.
Powiązania:
https://bibliotekanauki.pl/articles/260637.pdf
Data publikacji:
2005
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatura powierzchni wody
temperatura powietrza
Prąd Zachodniogrenlandzki
Ziemia Baffina
Labrador
West Greenland Currents
water temperature
air temperature
Baffin Island
Opis:
Praca omawia wpływ zmian temperatury wody powierzchniowej (TPO) w południowej i środkowej części Prądu Zachodniogrenlandzkiego na zmiany temperatury powietrza na stacjach położonych na wschodnich wybrzeżach Kanady. Szeregi temperatury powietrza pochodzą ze zbioru Historical Adjusted Climate Database for Kanada, a dane o TPO ze zbioru Reynoldsa w wersji SST OI v.1. W okresie 1982-2002 na wszystkich analizowanych stacjach występują dodatnie, istotne statystycznie trendy temperatury powietrza. Pomiędzy szeregami TPO w wybranych gridach ([62°N, 52°W] i [66°N, 56°W]) a szeregami temperatury powietrza na badanych stacjach dominują związki synchroniczne. Najsilniejsze związki asynchroniczne zachodzą pomiędzy zmiennością TPO w środkowej części Prądu Zachodniogrenlandzkiego a temperaturą powietrza na stacjach położonych na Ziemi Baffina.
This work deals the influence of changes the sea surface temperature (SST) in south and the centre part of the West Greenland Current in relays of the air temperature (AT) on stations located on eastern sea-coasts of Canada (Fig.1). The West Greenland Current is a warm current, which transports warm waters to the bay/ gulf of the Baffin Sea and in this way has a great influence on the formation of ice cover and on air temperature in this area. The Reynolds?s data set, version SST OI v.1., covering values of mean monthly SST in grids 1°x1° has been used as the data source. Yearly temperatures for selected grids have been calculated on the basis of mean monthly temperatures. Series of the air temperature for selected Canadian stations proceed from the service HCCD (Historical Adjusted Climate Database for Canada). The period 1982-2002 is characterized with the distinct warming up of the climate on the northern hemisphere. Appears this i.a. an increase in air temperature and an advanced process of sea ice cover degradation. A reason of this warming up is the accumulation of the warm in surface layers of the ocean and his distribution by the oceanic circulation. Trends in chronological series of mean yearly values of AT on stations located along of eastern sea-coasts of Canada have been analysed. Such an analysis indicated that on all staion the trends in air temperature prove to be positive and that these trends are statistically relevant (p < 0.05 ) on all stations. The highest values of trends can be observed on stations in the central and southern part of Baffin Island. Courses of the one year's temperature of air on selected stations show almost in step reaching changes (Fig. 2). Passed correlational analysis showed that among investigated series SST in selected grids ([62°N, 52°W] and [66°N, 56°W]) located on the West Greenland Current and series AT on stations situated on eastern sea-coasts of Canada dominated synchronous relationships. With the example can be the relationship among SST in grid [66°N, 56°W] and AT on the station Cape Dyer, where appear high values of coefficients of correlation and the maximum of the power of the relationship fall on December +0.93 (Tab. 1). Research showed that the variability of the yearly sea surface temperature in grid [66°N, 56°W] indeed influence on the formation of yearly AT on selected stations. On the stations Cape Dyer and Iqaluit the variability of yearly SST explains the variability of yearly AT properly into 67 and 57% (Fig. 3). On the warm West Greenland Current the changes of the water temperature outdistance during changes of the air temperature on stations of eastern sea-coasts of Canada. Such asynchronous relationships are best visible among a June and May sea surface temperature in grid [66°N, 56°W] and yearly AT on stations located in the Northern part of Baffin Island - Fig.4 and among May SST in grid [66°N, 56°W] and yearly AT in the next year (Fig.5). Most strong synchronous and asynchronous relationships between the variability of the sea surface temperature in the central part of the West Greenland Current and the air temperature occur on stations located on the Baffin Island area.
Źródło:
Problemy Klimatologii Polarnej; 2005, 15; 41-51
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Oceanic control of the warming processes in the Arctic - a different point of view for the reasons of changes in the Arctic climate
Kontrola oceaniczna procesów ocieplenia Arktyki - odmienny punkt spojrzenia na przyczyny zmian klimatu w Arktyce
Autorzy:
Marsz, A. A.
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260709.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Arktyka
delta Golfsztromu
ocieplenie
temperatura powietrza
temperatura powierzchni wody
czynniki naturalne
Arctic
Gulf Stream delta
warming
air temperature
SST
natural factors
Opis:
The paper describes the strong correlation between the sea surface temperature (SST) in the region of the Gulf Stream delta and anomalies in surface air temperature (SAT) in the Arctic over the period 1880-2007. This correlation results from the transfer of a variable amount of heat from the Atlantic tropics into the Arctic through oceanic circulation (AMO – Atlantic Multidecadal Oscillation). Reaction of sea ice is the main mechanism controlling the heat content in water carried to the Arctic and influencing the SAT. Sea ice may either increase or limit the heat flow from the ocean to the atmosphere. The genesis of the ‘Great warming of the Arctic’ in the 1930s and ‘40s is the same as that of the present day. Both may be considered to be attributable to natural processes and are not demonstrably associated in any way with a supposed ‘Global greenhouse effect’. Changes in the concentration of CO2 in the atmosphere could only explain 9% of variations in the SAT in the Arctic.
Praca wykazuje istnienie silnych związków między temperaturą powierzchni morza (SST) w rejonie delty Golfsztromu a przebiegiem anomalii temperatury powietrza w Arktyce (1880-2007). Związki te wynikają z transportu przez cyrkulację oceaniczną (AMO – Atlantic Multidecadal Oscillation) zmiennych ilości ciepła z rejonu atlantyckich tropików do Arktyki. Głównym mechanizmem regulującym wpływ zasobów ciepła w wodach wnoszonych do Arktyki na temperaturę powietrza jest reakcja lodów morskich, zwiększająca lub ograniczająca strumienie ciepła z oceanu do atmosfery. Geneza wielkiego ocieplenia Arktyki w latach 30-40. XX wieku i współczesnego ocieplenia Arktyki jest taka sama. Oba epizody ocieplenia Arktyki stanowią rezultat działania procesów naturalnych i nie są związane z dzia-łaniem efektu cieplarnianego. Zmiany koncentracji CO2 w atmosferze objaśniają około 9% wariancji SAT w Arktyce.
Źródło:
Problemy Klimatologii Polarnej; 2009, 19; 7-31
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany zlodzenia Morza Karskiego w latach 1979-2015. Podejście systemowe
Changes of sea ice extent on the Kara Sea in the years 1979-2015. System approach
Autorzy:
Styszyńska, A.
Marsz, A. A.
Powiązania:
https://bibliotekanauki.pl/articles/260907.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
pokrywa lodowa
zmiany powierzchni lodów
THC
temperatura powietrza
temperatura wody powierzchniowej
Morze Karskie
Arktyka
Atlantyk Północny
ice cover
changes in sea-ice extent
air temperature
sea surface temperature
Kara Sea
Arctic
North Atlantic
Opis:
Praca omawia zmiany powierzchni lodów na Morzu Karskim i mechanizmy tych zmian. Scharakteryzowano przebieg zmian zlodzenia, ustalając momenty skokowego zmniejszenia się letniej powierzchni lodów. Rozpatrzono wpływ cyrkulacji atmosferycznej, zmian temperatury powietrza i zmian zasobów ciepła w wodach na zmiany zlodzonej tego morza. Analizy wykazały, że wszystkie zmienne opisujące zarówno stan zlodzenia jak i stan elementów klimatycznych są ze sobą wzajemnie powiązane przez różnego rodzaju sprzężenia zwrotne. W rezultacie tworzy się rekurentny system, w którym zmiany powierzchni lodów, wpływając na przebieg innych elementów systemu (temperaturę powietrza, temperaturę wody powierzchniowej) w znacznej części same sterują swoim rozwojem. Zmiennością całego tego systemu sterują zmiany intensywności cyrkulacji termohalinowej (THC) na Atlantyku Północnym, dostarczając do niego zmienne ilości energii (ciepła). Reakcja systemu zlodzenia Morza Karskiego na zmiany natężenia THC następuje z 6.letnim opóźnieniem.
The work discusses the changes in the ice extent on the Kara Sea in the years 1979-2015, i.e. in the period for which there are reliable satellite data. The analysis is based on the average monthly ice extent taken from the database AANII (RF, St. Peterburg). 95% of the variance of average annual ice extent explains the variability of the average of ice extent in ‘warm' season (July-October). Examination of features of auto-regressive course of changes in ice extent shows that the extent of the melting ice area between June and July (marked in the text RZ07-06) can reliably predict the ice extent on the Kara Sea in August, September, October and November as well as the average ice extent in a given year. Thus the changes in ice extent can be treated as a result of changes occurring within the system. Analysis of the relationship of changes in ice extent and variable RZ07-06 with the features of atmospheric circulation showed that only changes in atmospheric circulation in the Fram Strait (Dipole Fram Strait; variable DCF03-08) have a statistically significant impact on changes in ice extent on the Kara Sea and variable RZ07-06. The analysis shows no significant correlation with changes in ice extent or AO (Arctic Oscillation), or NAO (North Atlantic Oscillation). Variable RZ07-06 and variable DCF03-08 are strongly correlated and their changes follow the same pattern. Analysis of the relationship of changes in ice extent and variable RZ07-06 with changes in air temperature (the SAT) showed the presence of strong relationships. These correlations differ significantly depending on the region; they are much stronger with changes in air temperature in the north than in the south of the Kara Sea. Temperature of cold period (average temperature from November to April over the Kara Sea, marked 6ST11-04) has a significant effect on the thickness of the winter ice and in this way the thickness of ice in the next melting season becomes part of the "memory" (retention) of past temperature conditions. The thickness of the winter ice has an impact on the value of the variable RZ07-06 and on changes in ice extent during the next ‘warm’ season. As a result, 6ST11-04 explains 62% of the observed variance of the annual ice extent on the Kara Sea. SAT variability in the warm period over the Kara Sea (the average of the period July-October, marked 6ST07-10) explains 73% of the variance of annual ice extent. SAT variability of the N part of the Kara Sea (Ostrov Vize, Ostrov Golomjannyj), which explains 72-73% of the variance ice extent during this period, has particularly strong impact on changes in ice extent during warm period. These stations are located in the area where the transformed Atlantic Waters import heat to the Kara Sea. Analysis of the impact of changes in sea surface temperature (SST) variability on sea ice extent indicated that changes in SST are the strongest factor that has influence on ice extent. The variability of annual SST explains 82% of the variance of annual ice extent and 58% of the variance of the variable RZ07-06. Further analysis showed that the SAT period of warm and annual SAT on the Kara Sea are functions of the annual SST (water warmer than the air) but also ice extent. On the other hand, it turns out that the SST is in part a function of ice extent. All variables describing the ice extent and its changes as well as variables describing the nature of the elements of hydro-climatic conditions affecting the changes in ice extent (atmospheric circulation, SAT, SST) are strongly and highly significantly related (Table 9) and change in the same pattern. In this way, the existence of recursion system is detected where the changes in ice extent eventually have influence on ‘each other’ with some time shift. The occurrence of recursion in the system results in very strong autocorrelation in the course of inter-annual changes in ice extent. Despite the presence of recursion, factors most influencing change in ice extent, i.e. the variability in SST (83% of variance explanations) and variability in SAT were found by means of multiple regression analysis and analysis of variance. Their combined impact explains 89% of the variance of the annual ice extent on the Kara Sea and 85% of the variance of ice extent in the warm period. The same rhythm of changes suggests that the system is controlled by an external factor coming from outside the system. The analyses have shown that this factor is the variability in the intensity of the thermohaline circulation (referred to as THC) on the North Atlantic, characterized by a variable marked by DG3L acronym. Correlation between the THC signal and the ice extent and hydro-climatic variables are stretched over long periods of time (Table 10). The system responds to changes in the intensity of THC with a six-year delay, the source comes from the tropical North Atlantic. Variable amounts of heat (energy) supplied to the Arctic by ocean circulation change heat resources in the waters and in SST. This factor changes the ice extent and sizes of heat flux from the ocean to the atmosphere and the nature of the atmospheric circulation, as well as the value of the RZ07-06 variable, which determines the rate of ice melting during the ‘warm’ season. A six-year delay in response of the Kara Sea ice extent to the THC signal, compared to the known values of DG3L index to the year 2016, allows the approximate estimates of changes in ice extent of this sea by the year 2023. In the years 2017 to 2020 a further rapid decrease in ice extent will be observed during the ‘warm' period (July-October), in this period in the years 2020-2023 ice free conditions on the Kara Sea will prevail. Ice free navigation will continue from the last decade of June to the last decade of October in the years 2020-2023. Since the THC variability includes the longterm, 70-year component of periodicity, it allows to assume that by the year 2030 the conditions of navigation in the Kara Sea will be good, although winter ice cover will reappear.
Źródło:
Problemy Klimatologii Polarnej; 2016, 26; 109-156
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rozmiary i przebieg współczesnego ocieplenia Arktyki w rejonie mórz Barentsa i Karskiego
Dimension and course of the present warming of the Arctic in the region of the Barents and Kara seas
Autorzy:
Marsz, A. A.
Styszyńska, A.
Zblewski, S.
Powiązania:
https://bibliotekanauki.pl/articles/260739.pdf
Data publikacji:
2008
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
współczesne ocieplenie
temperatura powietrza
trendy temperatury powietrza
temperatura powierzchni morza
wody atlantyckie
delta Golfsztromu
Arktyka
Morze Barentsa
Morze Karskie
present warming
air temperature
sea surface temperature
Atlantic waters
Gulf Stream
Arctic
Barents Sea
Kara sea
Opis:
Celem pracy była analiza rozmiarów i przebiegu współczesnego (1980-2007) ocieplenia wschod-niej części Arktyki Atlantyckiej w rejonie mórz Barentsa i Karskiego. Stwierdzono, że w tym okresie ocieplenie posiadało charakter pulsacyjny, składało się z kolejnych, coraz silniejszych wzrostów temperatury powietrza, oddzielanych od siebie okresami ochłodzeń. Poszczególnym fazom ocieplenia odpowiadają wzrosty transportu ciepłych wód atlantyckich do Morza Barentsa i wzrosty temperatury powierzchni morza (SST). Najwyraźniejsze fazy ocieplenia wystąpiły w latach 1988-1990 i 2002-2007. Najsilniejsze wzrosty temperatury zaznaczyły się w za-chodniej i północno-zachodniej części obszaru, najsłabsze na południowych wybrzeżach mórz Barentsa i Karskiego. Wzrost rocznej temperatury powietrza między okresami 1980-1982 a 2005-2007 może być szacowany na około 5°C w północo-zachodniej części obszaru (N i NW część Morza Barentsa) do około 1.5°C na południowo-wschod-nich wybrzeżach Morza Barentsa i południowo-zachodnich wybrzeżach Morza Karskiego. Analiza trendów wyka-zała, że statystycznie istotne trendy roczne występują jedynie na północnych i zachodnich skrajach badanego obszaru. W trendach sezonowych największą liczbę statystycznie istotnych trendów na poszczególnych stacjach obserwuje się latem. Średnie obszarowe trendy są jednakowe jesienią, zimą i wiosną (+0.065°Cźrok-1), wyraźnie niższe latem (+0.044°Cźrok-1), istotne statystycznie od wiosny do jesieni, nieistotne zimą. Analiza trendów mie-sięcznych wykazuje, że obraz, jaki daje analiza trendów sezonowych wiosny (III-V), lata (VI-VIII), jesieni (IX-XI) i zimy (XII-II) nie daje rzeczywistego obrazu rozkładu zmian temperatury w czasie. Wartości trendów miesięcznych rozłożone są skrajnie nierównomiernie, w okresie od listopada do stycznia oraz w kwietniu średnie wartości tren-dów na omawianym obszarze są większe od 0.1°Cźrok-1, w pozostałych miesiącach zawierają się w granicach od +0.020 (luty) do +0.052°Cźrok-1 (sierpień). Główną przyczyną obserwowanych zmian temperatury powietrza w rejonie obu mórz jest wzrost zasobów ciepła w wodach atlantyckich transportowanych do Arktyki z tropików i subtropików przez cyrkulację oceaniczną. Wzrost zasobów ciepła w wodach kierowanych z delty Golfsztromu na północ prowadzi z 1-4 letnim opóźnieniem do wzrostu SST i spadku powierzchni lodów na Morzu Barentsa, w mniejszym stopniu na Morzu Karskim. Oba czynniki (zmiany SST i zmiany powierzchni lodów) regulują następnie temperaturę powietrza, głównie poprzez wpływ na rozmiary strumieni ciepła z powierzchni morza do atmosfery. Znaczny wpływ na modyfikowanie zmian temperatury powietrza w stosunku do zmian wymuszanych przez zmiany SST ma regionalna cyrkulacja atmosferyczna, natomiast hemisferyczna (Oscylacja Arktyczna) i makroregionalna (NAO) mody cyrkulacyjne wywierają w rozpatrywanym okresie znikomy wpływ na zmiany temperatury powietrza, zmiany SST i zmiany powierzchni lodów morskich na morzach Barentsa i Karskim.
The aim of this work is the analysis of the dimensions and the course of contemporary (1980-2007) warming of the east part of the Atlantic Arctic in the region of the Barents and Kara seas (fig. 1, tab. 1). It has been noted that the warming in that period had pulsating character, was made up of consecutive stronger and stronger increases in air temperature, separated from each other by cooling periods (fig. 4, 6-7). The increase in the transport of warm Atlantic waters into the Barents Sea and the increase in SST (sea surface temperature) of this sea correspond to the subsequent phases of warming. The most significant phases of warming were noted in the years 1988-1990 and 2002-2007 (fig. 4). The strongest increases in temperature were marked in the west and north- west part of this region and the weakest in the south coast of the Barents and Kara seas (fig. 6-7). The annual increase in air temperature between the periods 1980-1982 and 2005-2007 may be estimated as about 5°C in the north-west part of this region (N and NW part of the Barents Sea) and as 1.5°C in the south-east coast of the Barents Sea and south – west coast of the Kara Sea (fig. 8). The analysis of trends indicated that the statistically significant annual trends are only observed in the north and west parts of the examined region (fig. 9-10). The greatest number of statistically significant trends in seasonal trends at the observed stations was noted in summer (table 2). The mean regional trends are equal in autumn, winter and spring (+0.065°Cźyear-1), significantly lower in summer (+0.044°Cźyear-1), statistically significant from spring to autumn and not significant in winter. The analysis of monthly trends indicated that the picture obtained from the analysis of seasonal trends (spring – III-V, summer – VI-VIII, autumn – IX-XI, winter – XII-II) does not reflect the real picture of the distribution of changes in temperature in time. The values of monthly trends are distributed in an extremely uneven way, in the period from November to January and in April the mean values of trends in the examined region are larger than 0.1°C year-1 and in the remaining months can be found within the limits from +0.020 (February) to +0.052°C year-1 (August) - see table 3. The main reason for the observed changes in air temperature in the region of both seas can be attributed to the increase in heat resources in the Atlantic waters transported to the Arctic from the tropics and sub-tropics with the oceanic circulation. The increase in heat resources in the waters imported north from the Gulf Stream, leads to the increase, delayed by 1-4 year in SST and to the decrease in the sea ice cover of the Barents Sea and, to a lesser extent, of the Kara Sea (tab. 4-6, fig. 13 and 15). Both factors (changes in SST and changes in sea ice extent) further control the air temperature mainly via the influence on the size of flow from the sea surface to the atmosphere. Great influence on the modification of changes in air temperature in relation to changes forced by changes in SST has the regional atmospheric circulation, whereas the hemispherical (AO) and macro-regional (NAO) circulation modes have little influence on the changes in air temperature, on changes in SST and on changes in sea ice extent of the Barents and Kara seas.
Źródło:
Problemy Klimatologii Polarnej; 2008, 18; 35-67
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-12 z 12

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies