Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "air temperature" wg kryterium: Temat


Tytuł:
Zmienność temperatury powietrza w Arktyce Kanadyjskiej w okresie 1951-2005
Variability of air temperature in the Canadian Arctic from 1951 to 2005
Autorzy:
Przybylak, R.
Maszewski, R.
Powiązania:
https://bibliotekanauki.pl/articles/260769.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatura powietrza
klasyfikacja termiczna
trendy temperatury powietrza
air temperature
Canadian Arctic
trends of air temperature
Opis:
W artykule przedstawiono szczegółową charakterystykę warunków termicznych na obszarze Arktyki Kanadyjskiej w okresie 1951-2005. Do tego celu wykorzystano średnie miesięczne, sezonowe i roczne wartości temperatury powietrza. Omówiono zarówno średnie rozkłady przestrzenne, jak też ich zmienność w badanym okresie czasu. Na podstawie uśrednionych obszarowo wartości temperatury powietrza dla całej Arktyki Kanadyjskiej, dla poszczególnych miesięcy i dla roku, ukazano ich zmienność w okresie 1951-2005 wykorzystując klasyfikacje termiczną zaproponowaną przez Miętusa i in. (2002).
This paper presents a detailed characterisation of thermal conditions in the Canadian Arctic from 1951 to 2005. For this purpose, monthly data (average, maximum and minimum temperatures) for 12 meteorological stations have been used (Table 1, Figure 1). Basic climatological characteristics have been calculated (Tables 3 and 4) and their spatial distributions are shown on maps (Figure 2). For seasonal and annual mean air temperature, the frequency of their occurrence in 1-degree intervals (Figure 4) as well as year-to-year changes (Table 4) have been calculated. For two time periods (1951-2005 and 1976-2005) air temperature trends for seasonal and annual means have also been presented (Table 5 and Figure 7). In both periods, areally averaged trends for the Canadian Arctic are positive. The greatest temperature trends were noted in autumn: 0.30°C/decade and 0.91°C/decade, respectively. From the period 1951-2005 to the period 1976-2005 a significant rise in trend values was observed, with the exception of winter. In the latter period, trends were statistically significant in summer, autumn and for the year as a whole. In the period 1951-2005, statistically significant trends occurred only in autumn (see Table 5). Thermal classifications of each month and year of the study period have been made according to the proposals of Miętus et al. (2002) (see Table 2 and Figure 8). The results of this classification show that after 1993 a significant increase in the number of months and years, classified as abnormally or extremely warm, was noted.
Źródło:
Problemy Klimatologii Polarnej; 2007, 17; 31-43
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Przebieg roczny temperatury powietrza na Antarktydzie
Annual course of air temperature on the Antarctic
Autorzy:
Kejna, M.
Powiązania:
https://bibliotekanauki.pl/articles/260895.pdf
Data publikacji:
2002
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Antarktyda
temperatury powietrza
Antarctic
air temperature
Opis:
On the Antarctic the annual course of air temperature shows a considerable spatial differentiation. Over the inland the course of temperature during the year is conditioned by insolation-radiational factors. On the coast the role of circulation factors connected with the advection of air masses from above the ocean or from the interior of the continent. In the paper mean monthly air temperatures from 56 stations making standard meteorological observations and from 38 automatic weather stations (AWS) have been used. On the Antarctic there types of annual air temperature courses can be distinguished: Oceanic - characterised by positive air temperatures in the summer season with the highest temperatures in February and by mild temperatures in the winter months (to -10°C). As a result of the ocean influence spring is considerable colder then autumn. The annual amplitudes are small (to 10-15°C). This type occurs on the western coast of the Antarctic Peninsula and on the subantarctic islands. Continental - with very low air temperatures. The warmest month is December with temperatures below -30°C in the interior of the continent. In winter the lowest mean monthly temperatures reach -70°C. The temperature frequently increases in the middle of winter; this phenomenon is called kernlose winter. The annual amplitude of air temperature is not high and in the interior its value reaches 30-35°C. The continental type includes the whole Antarctic except the narrow coastal belt. Coastal - characterised by air temperature around 0°C in the summer period. The warmest month is January. The lowest temperatures occur in January (-30° do -40°C). The growth of temperature in spring delays the heat uptake for the melting of sea ice. The annual amplitude of the air temperature is quite high and exceeds 20°C. Due to the influence of circulation factors on the Antarctic the annual course of the air temperature shows a large variability from year to year.
Źródło:
Problemy Klimatologii Polarnej; 2002, 12; 5-19
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany trendu temperatury powietrza na Antarktydzie w latach 1958-2000
Change of air temperature range on the Antarctic in the years 1958-2000
Autorzy:
Kejna, M.
Powiązania:
https://bibliotekanauki.pl/articles/260927.pdf
Data publikacji:
2003
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatury powietrza
Antarktyda
air temperature
Antarctic
Opis:
The progressive increase in the concentration of greenhouse gases in the atmosphere in consequence leads to the rise of the global air temperature. According to the III Report of IPCC (2001) from 1880 the mean temperature on the Earth has grown by 0.6°C ą0.2°C. The reaction of polar regions to the greenhouse effect is unknown. The Antarctic climate shows a considerably greater variability in comparison with the lower latitudes of the Southern Hemisphere. This is conditioned by interactions between the atmospheric circulation, the ocean, and the cryosphere. According to the scenarios of global greenhouse effect the temperature at the polar regions should grow by 3°C in summer and 4-5°C in winter. However, these model researches are not confirmed in reality. This shows that our knowledge concerning the functioning of climate system of the polar regions is insufficient. In the paper we have used monthly mean air temperature values for 21 stations being in operation on the Antarctic in the years 1958-2000 and for 34 stations making observations in the years 1981-2000. After checking the homogeneity of the series by the Alexandersson?s (1986) test we have counted the trends of air temperature. The average trend for annual and seasonal values were expressed by temperature change per 10 years. In the years 1958-2000 on the Antarctic the trend of the mean annual values of the air temperature shows great spatial differentiation. These differences are connected with the radiation balance depending on the variability of cloudiness and the albedo of the surface, and on the transformation of pressure fields and changes of the atmospheric circulation. Statistically significant (on 0.95 significance level) air temperature increase occurred on the western coast of the Antarctic Peninsula (for example Faraday 0.67°C/10 years) and at the stations Belgrano and McMurdo. A negative air temperature trend occurred on the South Pole (-0.21°C/10 years) and on the Droning Maud Land. The temperature changes in the region of the Antarctic Peninsula are correlated with the extension and surface of sea ice, especially in winter. There are considerable differences of air temperature trends on the Antarctic between the periods 1958-1980 and 1981-2000. The period 1958-1980 is characterized by an increase of air temperature, especially on the shore of continent (Casey 0.84°C/10 years, Faraday 0.76°C/10 years, Halley 0.69°C/10 years). The interior of the continent is distinguished by stability of weather conditions. Year-to-year temperature changes are smaller, then at the coast (the trend at the Amundsen-Scott station average 0.26°C/10 years). During the last years (1981-2000) significant changes took place in the tendency of air temperature on the Antarctic. In many regions of the Antarctic cooling began, on the cost of East Antarctica the temperature decreases, on the coasts of the Wilkes Land (Casey -0.82°C/10 years) and the Weddell Sea (Halley -1.13?C/10 years, Larsen Ice -0.89°C/10 years), especially in the autumn-winter period. In the interior of the continent also lower and lower temperatures occurred (Amundsen-Scott -0.42°C/10 years, Dome C -0.71°C/10 years). The cooling can be observed in all seasons, but it is the greatest in summer and autumn, when the decrease of solar radiation was observed in connection with the growing cloudiness. Vostok situated at the highest parts of ice dome does not show statistically significant trend. An increase of the temperature was observed in the interior of West Antarctica (Byrd 0.37°C/10 years). The warming rate of the climate became weaker on the Antarctic Peninsula (Faraday 0.56°C/10 years). The largest temperature changes occurred in the autumn-winter season when in the Antarctic Peninsula region the temperature increased, while in the interior and at the coast of East Antarctica considerably fell. Climate changes during the last 20 years of the 20th century showed the weakening of the warming rate on the Antarctic Peninsula and distinct cooling on the East Antarctica. The lack of warming, or even cooling, on the East Antarctica, is favourable to maintain the present climate system in this region. The increasing air temperature on the West Antarctic, especially on the Antarctic Peninsula caused many natural consequences. The ablation of glaciers clearly intensified, deglaciation takes place, glaciers retreat. The environmental changes lead to disturbances in the functioning of the Antarctic ecosystem.
Źródło:
Problemy Klimatologii Polarnej; 2003, 13; 7-26
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ocena dokładności stosowanych metod obliczania średnich i ekstremalnych dobowych wartości temperatury powietrza w Arktyce Kanadyjskiej w XIX wieku
Estimation of accuracy of methods used calculation of mean and extreme daily air temperature values in the American Arctic in the 19th century
Autorzy:
Przybylak, R.
Vizi, Z.
Powiązania:
https://bibliotekanauki.pl/articles/260639.pdf
Data publikacji:
2005
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Arktyka Amerykańska
temperatury powietrza
średnia i ekstremalna amplituda dobowa
American Arctic
air temperature
mean and extreme daily air temperature
Opis:
W artykule omówiono różne metody obliczania średnich dobowych temperatury powietrza w Arktyce Amerykańskiej w XIX wieku. Oceniono dokładność stosowania tych metod biorąc pod uwagę jako średnią wzorcową tzw. średnią dobową rzeczywistą temperaturę powietrza obliczaną z 24 danych cogodzinnych. Drugim problemem badawczych, który podjęto w artykule, jest oszacowanie wielkości błędów jakie się popełnia wybierając z różnych zbiorów danych godzinowych (co 1-, 2-, 3-godziny itd.) najwyższe i najniższe dobowe temperatury powietrza. Jako wzorzec w tym przypadku wykorzystano wartości temperatur maksymalnych i minimalnych powietrza odczytane z termometrów ekstremalnych. Podobną analizę przeprowadzono także dla amplitudy dobowej temperatury powietrza. Dla wszystkich analizowanych parametrów termicznych i dla wszystkich metod obliczania/wyznaczania średnich dobowych temperatury powietrza i temperatur ekstremalnych obliczono m. in. przeciętne błędy estymacji ich średnich miesięcznych wartości.
Knowledge about the history of climate in the Arctic is more and more important and necessary, especially at present when we are approaching the Fourth International Polar Year 2007-2008. Generally speaking, the history of the climate in this area during the 20th century is quite well known. On the other hand, little is known about the climate in the 19th century. Moreover, while we have extensive meteorological data for this period, in particular for the American Arctic, these data have many errors and biases. One of the most important biases is connected with the way in which daily mean air temperature has been calcu-lated. In the American Arctic during the 19th century nine different methods (m1-m9) were used. For the analysis we also added two presently used methods (m10-m11). The main aim of this paper is to estimate the magnitudes of errors which are connected with the use of the above methods of calculating daily means. As a real daily mean, the mean calculated using hourly data (m1) was used. Because in the American Arctic the mean daily air temperature is still calculated using formulae m11, we also calculated differences relative to this mean. Another issue which we undertake in the present paper concerns the estimation of errors which are the result of the method which was adopted to determine extreme temperatures (Tmax and Tmin) and the diurnal temperature range (DTR). We checked this for ten different methods (nine used in the 19th century) which used hourly, 2-, 3-, and 4-hourly etc. readings of air temperature for the purposes of calculation (see formulas m1-m10 for more details). As a base, real data, temperature readings from the extreme thermometers were used. For the analysis, hourly temperature data as well as daily Tmax and Tmin for the period 1979-1983 were used for the four meteorological stations (Eureka, Resolute, Coral Harbour and Iqaluit) located in the American Arctic. The results of our investigations are presented in Tables 1-5. The main conclusions can be summarized as follows: 1. Mean monthly temperatures obtained using methods m2-m5 and m9 of daily mean temperature calculation do not need to be corrected. The greatest errors (overestimation by 0.5 to 1.5°C) were found for the methods m6-m8 (owing to a lack of measurements during the night hours). The method m11 also produces significant errors. Generally, using this method, the mean monthly temperatures are most often lower (by 0.2 to 0.7°C) in relation to all methods analysed in the present paper (see Tables 1 and 2). 2. In accordance with expectations, mean monthly Tmax and Tmin determined using different methods are lower/higher than the respective monthly means calculated based on the readings from the maximum and minimum thermometers. When we determine Tmax and Tmin using hourly, 2-, and 3-hourly data, their monthly means are lower/higher, though generally by no more than 1.0°C. Greater errors are more clearly seen in the cold half-year than in the warm half-year (see Tables 3 and 4), 3. Mean monthly DTR calculated using hourly, 2-, and 3-hourly temperature data are lower than real values by about 0.5 to 2.0°C. For other methods of DTR calculations their errors are significantly greater - lower by about 3.0 to 4.0°C (see Table 5).
Źródło:
Problemy Klimatologii Polarnej; 2005, 15; 27-39
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ zmian temperatury wody na Prądzie Norweskim na kształtowanie rocznej temperatury powietrza w atlantyckiej Arktyce i notowane tam ocieplenie w okresie ostatniego 20-lecia
The influence of changes in water temperature in the Norwegian Current on annual air temperature in the Atlantic part of the Arctic and its warming noted over the past 20-year period
Autorzy:
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260694.pdf
Data publikacji:
2004
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatury powietrza
temperatury wody
Arktyka
water temperature
air temperature
Arctic
Opis:
Kruszewski, Marsz and Zblewski (2003) found out that winter temperature of water in the Norwegian Current indicates quite strong, occurring with a delay, correlations with the air temperature at Spitsbergen, Bjornoya, Hopen and Jan Mayen. Strong and statistically significant correlations between the mean sea surface temperature (SST) in the period January-March in grid 2°x2° [67°N, 10°E] and the monthly temperature of July, August and September with SST are marked the same year (3-5 month delay) and with the air temperature in November and December the following year (18-20 month delay). Waters of the Norwegian Current transport warm, of higher salinity Atlantic waters. Winter SST of the Atlantic Ocean characterizes the heat resources in the deeper layers of waters. SST in grid [67,10] in an indirect way characterizes heat resources carried with the Atlantic waters into the Norwegian Sea and farther to the Arctic together with the West Spitsbergen and Nordcap currents. The aim of this work is to describe the influence caused by changes in heat resources transported to the Arctic with the Norwegian Current on the annual temperature of air in the region of Hopen, Spitsbergen and Jan Mayen. The examined period covers the years of 1982?2002 and is marked by great warming in this area. The analysis of spatial distribution of correlation coefficients justifies Kruszewski and others (2003) hypothesis of mechanism causing the delayed influence of changes in water heat resources on the air temperature in this region The observed positive correlations between winter SST in [67,10] grid and air temperature in July, August and September result in the influence of changing water heat resources on atmospheric circulation noted in these months. Positive correlations in November and December in the following year result from the ?onflow? to the Arctic of warmer and of high salinity Atlantic waters. They have influence on the ice formation on the Greenland and Barents seas thus causing that influence of changing heat resources carried with waters on air temperature is much stronger. The analysis of regression made it possible to establish the correlation between annual air temperature at a given station (Ts) and winter water temperature (Tw) in [67,10] grid. Annual temperature in a year k is a function of two variables: Tw of the same year as the temperature Ts (Tw(k)) and Tw from the preceding year (Tw(k-1)): Ts(k) = A + b . Tw(k) + c . Tw(k-1) Table 3 contains the values of constant term and regression coefficients as well as statistical characteristics of formulas for the analysed stations. Both variables Tw from the year k and the year k-1 explain about 40% of the changeability in mean annual air temperature of the observed 20-year period at the analysed stations. This means that only one element, i.e. heat resource in the waters of the Norwegian Current, defined with the value Tw, determines more than 1/3 of the whole annual changeability in air temperature in the region located from Jan Mayen up to Hopen and from Tromso up to Ny Alesund. The station for which maximum explanation may be applied (47.7%) is Hopen, the station where the positive trend in annual temperature is the highest (+0.090°C/year). The values of regression coefficients b and c prove that the inertial factor connected with advection of the Atlantic waters has greater role in the changeability in mean annual temperature of air. The analysis of formula [2] indicates that great increases and decreases in annual temperature at the discussed stations will be observed in a k year if the values of Tw in two following years are significantly higher or lower than the mean ones. That is why the occurrence of positive trend in value of Tw should be followed by relatively systematic increase in annual air temperature at stations located at the described region. A positive trend in annual air temperature was noted at the analysed stations over the period 1982?2002. At Jan Mayen its value is +0.067 (ą0.028)°C/year (p<0.026). When taking the estimated values of regression coefficients in the multiple regression connecting the annual temperature at Jan Mayen with the value of Tw (Table 1) and the same value of trend T equal to +0.023 then the value of annual trend in air temperature at Jan Mayen influenced by trend Tw equals 0.0598°C/year. The obtained result indicates that the whole or almost whole warming observed at Jan Mayen in the years 1983-2002 may be explained by direct and indirect influence of the increase in the value of Tw over that period.
Źródło:
Problemy Klimatologii Polarnej; 2004, 14; 69-78
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ zmian temperatury wody powierzchniowej mórz Barentsa, Norweskiego i Grenlandzkiego na trend rocznej temperatury powietrza na Spitsbergenie
Influence of changes in sea surface temperature in the Barents, Norwegian and Greenland seas on the annual air temperature trend at Spitsbergen
Autorzy:
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/261025.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatura powietrza
temperatura powierzchni morza
Spitsbergen
air temperature
sea surface temperature
Opis:
Praca omawia wpływ zmian temperatury wód powierzchniowych (SST - sea surface temperature) mórz Barentsa, Norweskiego i Grenlandzkiego zachodzących w okresie zimowego wychładzania (styczeń-kwiecień) na roczne i sezonowe wartości temperatury powietrza na Spitsbergenie w okresie 1912-2010. Stwierdzono, że zimowa SST rozległej powierzchni mórz otaczających Spitsbergen jest silnie skorelowana z roczną temperaturą powietrza na Spitsbergenie przez kolejne trzy lata (k, k+1, k+2). Powierzchnia akwenów, na których występują opóźnione korelacje z temperaturą powietrza na Spitsbergenie stopniowo zmniejsza się, a siła związków słabnie. Obszary, na których w roku k+2 korelacje utrzymują najwyższą (p < 0.001) istotność odtwarzają szlaki przenosu prądowego. Akwen, na którym zmienność SST z roku k najsilniej koreluje z roczną i zimową temperaturą powietrza na Spitsbergenie w kolejnych trzech latach (k, k+1, k+2) nie zmienia swojego położenia - jest to obszar leżący na pograniczu N części Morza Norweskiego i W części Morza Barentsa - między Bjornoyą a Nordkapem. Długookresowe zmiany temperatury powierzchni mórz wokółspitsbergeńskich regulują długookresową zmienność temperatury powietrza na Spitsbergenie, a występujący w przebiegu rocznej temperatury powietrza trend ma swoją genezę w zmianach zasobów ciepła w wodach tych mórz.
This work discusses the influence of changes in SST (sea surface temperature) of the Barents, Norwegian and Greenland seas occurring during winter cooling (January-April) on annual and seasonal air temperatures at Spitsbergen during 1912-2010. It was found that the winter SST of vast seas surrounding the region of Spitsbergen is strongly correlated with annual and winter air temperature at Spitsbergen during the next three years (k, k+1, k+2). The sea areas, where the delayed correlations with air temperature at Spitsbergen are observed, gradually decrease, and the strength of the correlation decreases. The routes of moving current represent the areas where correlations maintain the highest significance (p <0.001) in the year k+2. The sea area, where variability of SST from year k is most strongly correlated with the annual and winter air temperature at Spitsbergen in the next three years (k, k+1, k+2) does not change its position - this is the area lying on the border of the north part of the Norwegian Sea and the west part of the Barents Sea - between Bjornoya and Nordkap. Long-term sea surface temperature changes of vast seas surrounding the region of Spitsbergen regulate the long-term variability of the air temperature on Spitsbergen, and appearing in the course of the annual air temperature trend has his own genesis in changes of resources of the warmth in waters of these seas.
Źródło:
Problemy Klimatologii Polarnej; 2011, 21; 115-131
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zlodzenie Hornsundu i wód przyległych (Spitsbergen) w sezonie zimowym 2011-2012
Ice conditions in Hornsund and adjacent waters (Spitsbergen) during winter season 2011-2012
Autorzy:
Kruszewski, G.
Powiązania:
https://bibliotekanauki.pl/articles/972205.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatura powietrza
wiatr
Akseloya
Calypsobyen
Spitsbergen
air temperature
wind
Opis:
W pracy przedstawiono zróżnicowanie warunków meteorologicznych jakie występuje latem w rejonie Bellsundu. Analizą objęto okres od 23 czerwca do 1 września 2011 roku. Długość serii pomiarowej wynika z terminu rozpoczęcia i zakończenia Wyprawy UMCS na Spitsbergen. W pracy przeanalizowano zmienność temperatury powietrza oraz kierunku i prędkości wiatru na stacjach Calypsobyen i Akseloya. W badanym czasie na stacji Akseloya dominuje wiatr NE, a subdominuje wiatr z SW, natomiast na stacji Calypsobyen odpowiednio wiatry z ENE i NW. Na obu stacjach średnie prędkości wiatru są zbliżone. Przy wszystkich kierunkach wiatru, poza sektorem SW, temperatura powietrza na stacji Akseloya jest wyższa niż na Calypsobyen. Największe różnice temperatury występują przy wiatrach z ESE (4,3 deg). Występowanie wyraźnego ocieplenia na stacji Akseloya przy wiatrach z sektora E – SSE wiązać należy ze zjawiskami fenowymi.
The paper presents a variation of meteorological conditions that are observed during summer in the region of Bellsund. The analysis covered the period from 21 June to 1 September 2011. The length of the measurement series results from the date of commencement and completion of UMCS Expedition to Spitsbergen. The paper examines the variability of air temperature and wind direction and speed at the Calypsobyen and Akseloya stations. In the analyzed period, NE wind dominates at the Akseloya station and SW wind sub-dominates there whereas at the Calypsobyen station winds from ENE and NW respectively. The average wind speeds at both stations are similar. For all wind directions, outside the SW sector, the air temperature at the Akseloya station is higher than at the Calypsobyen station. The largest temperature differences occur when winds from ESE (4.3 deg) are observed. The presence of visible warming at the Akseloya station during winds from the E-SSE sector should be associated with the phenomenon of foehn winds.
Źródło:
Problemy Klimatologii Polarnej; 2013, 23; 169-179
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stosunki termiczne i wilgotnościowe w Zatoce Treurenberg i na masywie Olimp (NE Spitsbergen) w okresie od 1.VIII.1899 - 15.VIII.1900
Thermal and humidity relations in Treurenberg Bay and Massif Olimp (NE Spitsbergen) from 1st August 1899 to 15th August 1900)
Autorzy:
Przybylak, R.
Dzierżawski, J.
Powiązania:
https://bibliotekanauki.pl/articles/260665.pdf
Data publikacji:
2004
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatury powietrza
wilgotność powietrza
Spitsbergen
air temperature
atmospheric humidity
Opis:
The paper describes weather conditions (based on air temperature and humidity) in Treurenberg Bay and Massif Olimp (NE Spitsbergen) for the period from 1st August 1899 to 15th August 1900. The hourly data of the meteorological elements under analysis were collected by the Swedish-Russian scientific expedition, which was sent to Spitsbergen in 1899 to measure an arc of the Earth?s meridian. During the expedition two meteorological stations were established (Fig. 1): the main one (21.9 m a.s.l.) located by the sea in Treurenberg Bay (hereafter 'Treurenberg') and a secondary station (408 m a.s.l.) situated on Massif Olimp (hereafter 'Olimp'). The quality of data were checked and assessed as being very good, especially for the Treurenberg station. The air temperature (T) in Treurenberg in the annual march was highest in August (mean monthly T = 2.1°C) and lowest in March (-27.0°C) (Tab. 2, Fig. 2). Mean yearly T was equal to -9.8°C. The values of T in this part of Spitsbergen are significantly lower than in the western coastal part of the island where, for example, the average annual T for the period 1975-2000 was about twice as high (see Przybylak et al. 2004). On the other hand, mean monthly daily T ranges in Treurenberg are greater (Fig. 3). Day-to-day T changes in the annual cycle were greatest in the cold half-year, and lowest in summer (Fig. 4). These changes are lower here than in the western coastal part of Spitsbergen. Mean monthly daily courses of T are clearest from April to September, showing maximum T in the afternoon, and minimum in the early morning hours (Fig. 5). From October to March (but especially during the polar night) the average daily courses were smooth. Air humidity in Treurenberg was characterized using three commonly used variables: water vapor pressure, relative humidity, and saturation deficit. Due to very low T and quite a large thermic continentality of the climate in NE Spitsbergen, water vapor pressure in Treurenberg is lower than in the western coastal part of Spitsbergen. The highest values in Treurenberg occurred in summer (on average about 6 hPa) and the lowest in late winter (below 1 hPa) (Tab. 2, Fig. 6). Generally, similar relations in the annual march are also seen for two other air humidity variables (see Tab. 2, Fig. 6). The annual cycles of day-to-day changes of all humidity variables in Treurenberg are not clear, as they consist of many maximums and minimums (Fig. 7). These changes are lower here than in other parts of Spitsbergen (see Table 15 in Przybylak 1992a). Mean daily courses of relative humidity are smooth for most months. Only in April and in the period from June to September do we see normal daily cycles with lowest values in 'day' hours and highest values in 'night' hours (Fig. 9). The annual course of T in the Olimp station is similar to that occurring in Treurenberg (Figs. 2 and 10). Of course, the upper station was colder, but only by 1oC for mean annual values (Fig. 11). The drop of T in the Treurenberg region - a drop that is lower than is normally observed in the atmosphere (0.6oC/100 m) - was probably caused by measurement errors (the thermograph at the Olimp station was wrapped in thin material in order to stop the snow accumulating around the metallic sensor). Only limited air humidity data were gathered for the Olimp station due to measurement problems of this element in cold half-year. Therefore, most observations were made only in summer, and they show that the relative humidity was in most cases greater here than at the Treurenberg station. The investigation shows that weather conditions in the NE part of Spitsbergen differ significantly from those observed in the western coastal part of the island. Both T and air humidity are significantly lower in the study area, and these differences in the case of T are especially large in winter.
Źródło:
Problemy Klimatologii Polarnej; 2004, 14; 133-147
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Porównanie wybranych elementów meteorologicznych w sezonie letnim 2011 roku między stacjami Calypsobyen i Akseloya (W Spitsbergen)
Comparison of some selected meteorological elements of the summer season 2011 between Calypsobyen and Akseloya stations (W Spitsbergen)
Autorzy:
Styszyńska, A.
Siwek, K.
Gluza, A.
Powiązania:
https://bibliotekanauki.pl/articles/260755.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatura powietrza
wiatr
Akseloya
Calypsobyen
Spitsbergen
air temperature
wind
Opis:
W pracy przedstawiono zróżnicowanie warunków meteorologicznych jakie występuje latem w rejonie Bellsundu. Analizą objęto okres od 23 czerwca do 1 września 2011 roku. Długość serii pomiarowej wynika z terminu rozpoczęcia i zakończenia Wyprawy UMCS na Spitsbergen. W pracy przeanalizowano zmienność temperatury powietrza oraz kierunku i prędkości wiatru na stacjach Calypsobyen i Akseloya. W badanym czasie na stacji Akseloya dominuje wiatr NE, a subdominuje wiatr z SW, natomiast na stacji Calypsobyen odpowiednio wiatry z ENE i NW. Na obu stacjach średnie prędkości wiatru są zbliżone. Przy wszystkich kierunkach wiatru, poza sektorem SW, temperatura powietrza na stacji Akseloya jest wyższa niż na Calypsobyen. Największe różnice temperatury występują przy wiatrach z ESE (4,3 deg). Występowanie wyraźnego ocieplenia na stacji Akseloya przy wiatrach z sektora E – SSE wiązać należy ze zjawiskami fenowymi.
The paper presents a variation of meteorological conditions that are observed during summer in the region of Bellsund. The analysis covered the period from 21 June to 1 September 2011. The length of the measurement series results from the date of commencement and completion of UMCS Expedition to Spitsbergen. The paper examines the variability of air temperature and wind direction and speed at the Calypsobyen and Akseloya stations. In the analyzed period, NE wind dominates at the Akseloya station and SW wind sub-dominates there whereas at the Calypsobyen station winds from ENE and NW respectively. The average wind speeds at both stations are similar. For all wind directions, outside the SW sector, the air temperature at the Akseloya station is higher than at the Calypsobyen station. The largest temperature differences occur when winds from ESE (4.3 deg) are observed. The presence of visible warming at the Akseloya station during winds from the E-SSE sector should be associated with the phenomenon of foehn winds.
Źródło:
Problemy Klimatologii Polarnej; 2013, 23; 157-168
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Odczuwalność cieplna w okresie zimowym w rejonie Polskiej Stacji Polarnej w Hornsundzie w latach 1991-2000
Thermal sensations in Winter months over the Polish Polar Station in Hornsund area; 1991-2000
Autorzy:
Owczarek, M.
Powiązania:
https://bibliotekanauki.pl/articles/260653.pdf
Data publikacji:
2004
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Spitsbergen
temperatury powietrza
odczuwalność cieplna
air temperature
thermal sensations
Opis:
Evaluation of thermal conditions on polar station is the subject of this paper. Calculations based on the Polish Polar Station in Hornsund data at 06, 12 and 18 GMT in the period 1991-2000. Three bio-meteorological indices were analyzed: Wind Chill Index (WCI) according to Siple-Passel formula (1945), Wind Chill Temperature Index (WCTI) based on new American and Canadian formula (2002) and Insulation Predicted (Iclp) according to Burton-Edholm formula (1955). Hypothermic conditions were noticed most often (60-90%) during considered period. Comfortable thermal conditions took below 10% causes per month only. The risk of frostbite of exposed skin could be noticed from November to April from 1% to over 18% causes per moth. The most severe conditions were occurred in February. There is a necessary to use clothes of over 4 clo thermal insulation and wind-protectors for most of considered period. There is also the need for keeping active, covering exposed skin and being ready to short outdoor activities.
Źródło:
Problemy Klimatologii Polarnej; 2004, 14; 171-182
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rola cyrkulacji atmosfery w kształtowaniu temperatury powietrza w styczniu na Spitsbergenie
Role of atmospheric circulation on the January temperature variability in Spitsbergen
Autorzy:
Niedźwiedź, T.
Powiązania:
https://bibliotekanauki.pl/articles/260696.pdf
Data publikacji:
2004
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
cyrkulacja atmosfery
Spitsbergen
temperatury powietrza
atmospheric circulation
air temperature
Opis:
The study presents variability of simple circulation indices above Spitsbergen for the period 1899-2004 in January, based on original calendar of synoptic divided from the synoptic maps. After calculation of synoptic types frequencies the further results have been obtained using the simple circulation indices: W - westerly, zonal index, S - southerly - meridional index, C - cyclonicity index, as proposed by R. Murray and R. Lewis (1966) with some modifications, as well as Spitsbergen Oscillation (OS) defined as the standarized pressure difference between Bjornoya and Longyearbyen. The negative value of W index is typical for Spitsbergen, according to great frequency of eastern airflow. Variability of January temperature in Svalbard (t01SV) were investigated on the basis of averages from four stations: Isfjord Radio and Svalbard Lufthavn, as well as from Polish Polar Station in Hornsund Fiord on SW part of Spitsbergen, and from Bjornoya (Bear Island) - about 300 km SSE from Hornsund. After reconstructions of some lack data on the basis of linear regression, temperature data were obtained for the period of 1912-2004. For the temperature the main feature is period of cooling in the years 1912-1918 and then the great warming during the decade of 1930th (1933-1937). During the years 1937-1971 was observed the significant decreasing trend in January temperature to the cool period of years 1962-1971. The last period 1971-2004 has no any trend in temperature. But three large fluctuations took place with warm Januarys of 1972-1974, 1990-1992 and 1999-2001 and cool ones of 1975-1982, 1993-1998 and 2002-2004. Temperature of January changes in Spitsbergen depend on a great extend of circulation factors, mainly from the southern (S) and zonal circulation indices (W) or Spitsbergen Oscillation index (SO). Using the models of multiple regression was possible the recontruction of January temperature since 1899 on the basis of circulation indices. They explained about 63% of variance in temperature.
Źródło:
Problemy Klimatologii Polarnej; 2004, 14; 59-68
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Przebieg wartości wskaźnika oceanizmu na Szetlandach Południowych według zweryfikowanych danych połączonego ciągu Deception-Bellingshausen (1944-2000)
The course of oceanicity index in the South Shetlands on the basis of verified data of the 'syntetic' Deception-Bellingshausen series (1947-2000)
Autorzy:
Styszyńska, A.
Zblewski, S.
Powiązania:
https://bibliotekanauki.pl/articles/260891.pdf
Data publikacji:
2002
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Szetlandy Południowe
temperatury powietrza
South Shetland Islands
air temperature
Opis:
This article presents the characteristic of the course of oceanicity index (Oc) in the region of the South Shetlands and its correlation with ENSO. The research made use of reconstructed by Lagun and Marshall (2001) series of monthly air temperatures at Bellingshausen station (1947-2000). The values of Oc have been calculated both for a calendar and hydrologic years (May - April) with a formulae given by Marsz (1995). Series of Southern Oscillation indexes (SOI) obtained from CRU has been used to examine correlation between Oc and ENSO. Periods of smaller and greater changes in Oc index were observed to take place one following another in the said period (Fig. 1) and a good proportion of the years was marked by ultraoceanicity. A posotive trend appearing in the series turned to be not statistically significant (Fig. 3). The analysis showed 2-year and 6-year periodiciy in the series of Oc index. Correlation between oceanicity index and mean annual air temperature (Fig. 2) and minimum temperature is characterised by high statistical significance. The fact that most significant correlation occurs in winter may prove that changes in ice condition have great influence on the increase in the frequency of occurrence of fresh sea air masses. The obtained results point to a tendency that the increase in air temperature in the region of the South Shetlands and the northern coast of the Antarctic Peninsula is followed by the increase in the transport of heat from the ocean to the atmosphere, represented by the increase in oceanicity index. At this stage we obtain quite paradoxical picture, i.e. the increase in the transfer of heat from the surface of the ocean should be accompanied by great rise in air temperature in winter, that is in the period when the intensity of heat transfer from the ocean to the atmosphere reaches greatest values. However, the analysis of trends indicated that the greatest rise in temperature was observed in the warmest month and in summer temperatures, that is in the periods when the heat transfer from the ocean to the atmosphere was least intensive. This means, that a possible cause ? effect sequence relating the increase in air temperature to the intensity of ocean influence observed in this area must be more comlicated than it is usually observed. Quite clear correlations may by noted here, although occurring with a long, 2-year time shift between the Oc and SOI. Such a great time shift suggests that the correlation between those variables cannot by governed by direct atmospheric circulation but there must be an in direct inertion linking element that retards the effect of temperature increase. The only possible link of this type ocean. The mechanisms that cause the shift of the maximum increase in the transfer of heat from the ocean to the air in winter to the increase in air temperature in summer are not clear. The co-author research results obtained so far seem to indicate that the mechanism responsible for the shift may be attributed to large scale changes in sea surface temperature reflected in changes in sea ice cover extent and its concentration.
Źródło:
Problemy Klimatologii Polarnej; 2002, 12; 21-32
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kalendarz pogód dla Hornsundu podczas wyprawy założycielskiej 1957/58
Weather calendar for the Founding Expedition Hornsund 1957/58
Autorzy:
Malik, P.
Powiązania:
https://bibliotekanauki.pl/articles/260661.pdf
Data publikacji:
2004
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Spitsbergen
temperatury powietrza
opady atmosferyczne
pogoda
air temperature
precipitation
weather
Opis:
The Weather calendar for the Founding Expedition Hornsund 1957/58 is conceived using four meteorological elements: air temperature, wind speed, precipitation and relative humidity. Each of those variables is classified as system consisting of three classes, except precipitation, which comprises two classes. First class contains values below 25% percentile (under normal), third contains values above 75% percentile (above normal) of meteorological elements under consideration. Second class contains values between first and third class (normal). Precipitation is classified using two-class system, which describes if precipitation occurs or not. These rules give 3 groups, 9 subgroups, 18 classes and 54 types of weather. All statistics are presented for three periods: 12 months from August 1957 to July 1958, polar night and polar day. In all these periods groups of weather with normal temperature (2WOF) dominate. Typical weather subgroups are those of low temperature and weak wind (11OF) as well as normal temperature with weak (21OF) and moderate wind (22OF). Prevailing weather class is cool weather with weak wind and without precipitation (110F). Characteristic attribute of Hornsund area is weather with low humidity (TWO1).
Źródło:
Problemy Klimatologii Polarnej; 2004, 14; 149-156
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Porównanie przebiegu temperatury powietrza w Petuniabukta i Svalbard-Lufthavn (Isfjord, Spitsbergen) w latach 2001-2003
Comparison of the course od air temperature in Petuniabukta and Svalbard-Lufthavn (Isfjord, Spitsbergen) in the years 2001-2003)
Autorzy:
Rachlewicz, G.
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260731.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
dobowa temperatura powietrza
Petuniabukta
Svalbard-Lufthavn
Spitsbergen
daily air temperature
Opis:
W pracy porównano dobowe wartości temperatury powietrza mierzonej w okresie 7 VII 2001 – 13 VIII 2003 roku w Petuniabukta położonej w głębi Billefjorden i Svalbard-Lufthavn leżącym na południowym brzegu Isfjordu. Średnia miesięczna temperatura latem (VI–VIII) jest w Petuniabukta o 1 deg wyższa, a zimą (XI–IV) o około 3 deg niższa niż w Svalbard-Lufthavn. W sezonach zimowych średnie dobowe wartości temperatury w Petuniabukta są przeciętnie o 2–4 deg niższe niż w Svalbard-Lufthavn, a latem o 1–2 deg wyższe.
This work presents values of daily air temperature measured in the period 7th July 2001 – 13th August 2003 in Petuniabukta located inside Billefjorden and in Svalbard-Lufthavn located at the southern coast of Isfjord. Mean monthly temperature in summer (June-August) in Petuniabukta was found to be 1deg higher and in winter (November – April) about 3deg lower than at Svalbard-Lufthavn (Tab.1). During winter seasons mean daily temperatures in Petuniabukta are about 2–4deg lower than at Svalbard-Lufthavn and in summer 1–2deg higher (Fig.6). The transition periods are characterized by great differences in temperatures. At the beginning of autumn, in September, thermal conditions in NE (Skottehytta) and S (Svalbard-Lufthavn) part of Isfjord are similar, later, the shorter the day is, the colder the inside of the Billefjorden becomes. In October the temperature at Skottehytta was already 1deg lower than at Svalbard-Lufthavn. In May 2002 it was 2.1deg warmer at Svalbard-Lufthavn and in 2003 it was 2.6deg warmer at Petuniabukta. Taking into consideration similar ice conditions observed during these two years in May both in the vicinity of the station and in the foreshore of the Isfjord, the observed differences in thermal conditions must be attributed to changes in cloudiness and to advection factor. In individual months significant differences in temperatures are noted at both stations. The greatest differences in temperatures between stations are observed from January to April (Tab.3, Fig.3 and 4). During the analyzed period the strongest correlations were noted in the months of the latter part of the year, i.e. from September to December (r >0.9) and the weakest were found in June (Tab.2, Fig.7). 134
Źródło:
Problemy Klimatologii Polarnej; 2007, 17; 121-134
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ob izmenenii klimata v troposfere nad Antarkticheskim poluostrovom
About climatic changes of troposphere over Antarctic Peninsula
Autorzy:
Andukhov, O. A.
Lagun, V. E.
Chernykh, I. V.
Jagovkina, S. V.
Powiązania:
https://bibliotekanauki.pl/articles/260820.pdf
Data publikacji:
2006
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
troposfera
zmiany klimatyczne
temperatura powietrza
troposfere
climatic changes
air temperature
Opis:
O zmianach klimatu troposfery w rejonie Półwyspu Antarktycznego. Porównanie rezultatów oceny trendów otrzymanych różnymi metodami z opracowania zbiorów danych CARDS i AANII wykazało ich zgodność. W przypadku trendów szacowanych za pomocą przedstawionej metody punktowej, ich średni kwadratowy błąd jest praktycznie zawsze mniejszy, niż błąd oceny trendu oszacowanego metodą tradycyjną. Oznacza to, że istotność statystyczna trendu oszacowanego metodą punktową jest wyższa, a sam trend jest oszacowany bardziej dokładnie. Metoda punktowa pozwala na uzyskanie wyraźnie gładszego przebiegu linii trendu co potwierdza jego wyższe prawdopodobieństwo, trend szacowany tą metodą jest również mniej wrażliwy na zmienne długości ciągów danych (w sensie dużego podobieństwa ocen wartości trendu ze zbiorów danych o różniących się długościach). Wykorzystanie zróżnicowanych metodyk dla obliczania trendów wykazało, że przedstawione nowe podejście, opierające się na wykorzystaniu danych terminowych z uwzględnieniem ich korelacji w czasie, pozwala otrzymać dokładniejsze i bardziej wiarygodne oceny wartości trendów w porównaniu z metodami tradycyjnymi. Jest to szczególnie ważne przy badaniach zmian klimatu zachodzących na trudnodostępnych obszarach polarnych naszej planety. Przedstawione badania wykonano w ramach podprogramu "Poznanie i badania Antarktyki" Federalnego Programu Celowego "Ocean Światowy", a także projektu RFFI No 04-05-64681.
Comparison of estimations of trend values, obtained by different methods on the base of CARDS and AARI data set, has shown its consistency. Research reveals: trend error determination for points method is less than in months method and therefore statistical significance of trend can be determined more carefully; points method gives the possibility of getting much smoother trend profiles and this is likelihood; points method estimation results are less sensitive to the time series length. The using of different methods for estimations of the trend values has shown that new presented robust method, based on the using of hourly observed values with provision for correlation dependence in time (points method), presents the possibility to more accurate estimate of trends values in comparison with the traditional approach in trend estimation. This is important for investigation of climate change of Polar Regions of the Earth due difficult weather conditions and weather observations at the regions. The study was supported by Russian Program 'Study and Investigation of Antarctica' and RFBR Project 04-05-64681.
Źródło:
Problemy Klimatologii Polarnej; 2006, 16; 7-22
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies