Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "CO2 emission" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Wpływ wykorzystania osadów ściekowych w technologii produkcji klinkieru portlandzkiego na poziom emisji CO2
The impact of the application of sewage sludge in Portland clinker manufacture on CO2 emissions
Autorzy:
Głodek-Bucyk, E.
Sładeczek, F.
Kalinowski, W.
Dudkiewicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/391939.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Ceramiki i Materiałów Budowlanych
Tematy:
cement portlandzki
klinkier
technologia produkcji
wykorzystanie odpadów
osad ściekowy
współspalanie osadów ściekowych
emisja CO2
poziom emisji
Portland cement
clinker
production technology
waste utilization
sewage sludge
sewage sludge co-combustion
CO2 emission
emission level
Opis:
W pracy przedstawiono problematykę wykorzystania komunalnych osadów ściekowych (KOS) w układach wypalania klinkieru. Są one atrakcyjnym substytutem węgla ze względu na neutralność pod kątem emisji CO2. W celu określenia poziomu emisji CO2 ze spalania mieszanki paliw w nowoczesnym układzie linii wypalania klinkieru o wydajności 2000 ton/dobę przeprowadzono obliczenia dla różnych konfiguracji współspalanych paliw. Wykazały one, iż substytucja węgla paliwami alternatywnymi i osadami ściekowymi na poziomie 85% skutkuje zmniejszeniem wskaźnika emisji paliwowej dwutlenku węgla o ok. 35%.
The paper presents an analysis of the application of sewage sludge in systems of the clinker burning. Sewage sludge is an attractive substitute for coal due to neutrality in terms of CO2 emissions. In order to determine the level of CO2 emissions from the mixed fuel combustion in modern clinker burning line with a capacity of 2000 tons/day, calculation for various configurations of co-combustion fuels were carried out. It was showed that the substitution of coal with alternative fuels and sewage sludge at the level 85% results in a reduction of fuel emission of carbon dioxide by about 35%.
Źródło:
Prace Instytutu Ceramiki i Materiałów Budowlanych; 2016, R. 9, nr 26, 26; 40-50
1899-3230
Pojawia się w:
Prace Instytutu Ceramiki i Materiałów Budowlanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sposoby redukcji emisji CO2 w przemyśle cementowym na przykładzie Cementowni „Chełm” – Cemex Polska
Ways of CO2 emissions reduction in the cement industry on the example of Chełm Cement Plant – Cemex Poland
Autorzy:
Radelczuk, H.
Powiązania:
https://bibliotekanauki.pl/articles/392037.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Ceramiki i Materiałów Budowlanych
Tematy:
przemysł cementowy
emisja CO2
redukcja emisji
paliwo alternatywne
surowiec niewęglanowy alternatywny
mineralizator
klinkier portlandzki
cement industry
CO2 emission
emission reduction
alternative fuel
alternative non-carbonate raw material
mineralizer
Portland clinker
Opis:
W artykule przedstawiono efektywne sposoby redukcji emisji CO2 w procesie produkcji klinkieru cementowego stosowane przez Cementownię „Chełm”. Opracowanie obejmuje laboratoryjne i przemysłowe wyniki testów produkcji klinkieru z zestawów surowcowych zawierających tzw. surowce alternatywne, takie jak: popiół lotny wapienny, wapno pokarbidowe, granulowany żużel wielkopiecowy, wapno posodowe czy niewielki dodatek mineralizatora. Przedstawiono również wpływ współspalania paliw alternatywnych i biomasy, zastosowania techniki oxy-fuel oraz wykorzystania ciepła odpadowego w procesie suszenia paliw na zmniejszenie emisji dwutlenku węgla. Przeprowadzone testy wykazały znaczne zmniejszenie emisji CO2 podczas produkcji klinkieru portlandzkiego przy zastosowaniu wymienionych materiałów jako składników zestawu surowcowego oraz współspalaniu paliw alternatywnych i biomasy. Wprowadzenie 1% lotnego popiołu wapiennego, zawierającego 18–27% CaO, prowadzi do zmniejszenia emisji o 9–11 kg CO2/tonę klinkieru, w zależności od zawartości tlenku wapna. Natomiast dodatek 1% wapna pokarbidowego, zawierającego ok. 60% CaO, powoduje zmniejszenie emisji CO2 odpowiednio o ok. 7 kg/tklk, zbliżoną redukcję CO2 powoduje też podanie 1% granulowanego żużla wielkopiecowego. Zastosowanie niewielkich ilości 0,2–0,3% mineralizatora pod postacią fluorytu do zestawu surowcowego, zawierającego jako aktywny składnik CaF2, powoduje ok. 4–5% jednostkową redukcję zużycia ciepła na klinkier, co przekłada się na jednostkową redukcję emisji CO2 z procesu spalania rzędu 16–24 kg/tklk. Stosowanie wszelkiego rodzaju biomasy, np. mączki mięsno-kostnej i suszonych osadów ściekowych, w ilości 8–10% ciepła na klinkier, zmniejsza emisję CO2 nawet do 40 kg/tklk. Poprzez wprowadzenie wyżej opisanych metod Cementownia „Chełm” ograniczyła jednostkową emisję dwutlenku węgla do atmosfery o 112 kg/tklk, redukując wskaźnik emisji z 859 kg CO2/tklk w 2010 r. do 747 kg CO2/tklk na koniec listopada 2017 r.
The article presents effective ways of CO2 emission reduction in the cement clinker production process used by Chelm Cement Plant. The article contains laboratory and industrial results of clinker production tests, from raw mix containing so-called alternative raw materials such as: calcerous fly ash, carbide calcium, granulated blast furnace slag, soda lime or a small addition of mineralizer. The impact of co-combustion of alternative fuels and biomass, the use of oxy-fuel technology and the use of waste heat in the process of drying fuels to reduce CO2 emission are also presented. The conducted tests showed a significant reduction of CO2 emission during the production of portland clinker using the above-mentioned materials as components of a raw mix and co-combustion of alternative fuels and biomass. The introduction of 1% calcerous fly ash, containing between 18–27% CaO, leads to emission reduction of 9–11 kg CO2/ton of clinker, depending on the content of calcium oxide. While the addition of 1% of the carbide calcium, containing approx. 60% CaO, causes reduction of CO2 emissions by approx. 7 kg/ton of clinker, also similar reduction causes addition of 1% of granulated blast furnace slag to raw mix. The use of small amounts of 0,2–0,3% mineralizer to raw mix in the form of fluorite, containing CaF2 as an active component causes about 4–5% unitary reduction of heat consumption on clinker, which translates into unitary reduction of CO2 emissions from the combustion process by 16–24 kg/ton of clinker. The use of all types of biomass, eg meat and bone meal and dried sewage sludge, in an amount of 8–10% of heat on clinker, reduces CO2 emissions up to 40 kg/ton of clinker. By introducing the methods described above, the Chelm Cement Plant reduced the unitary CO2 emission to the atmosphere by 112 kg/ton of clinker, reducing the emission factor from 859 kg CO2/ton of clinker in 2010 to 747 kg CO2/ton of clinker in the end of November 2017.
Źródło:
Prace Instytutu Ceramiki i Materiałów Budowlanych; 2017, R. 10, nr 30, 30; 107-116
1899-3230
Pojawia się w:
Prace Instytutu Ceramiki i Materiałów Budowlanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ wykorzystania odpadów z procesów termicznych w zestawach surowcowych na ciepło tworzenia klinkieru portlandzkiego
The influence of thermal treatment waste usage in raw mix on heat of Portland clinker formation
Autorzy:
Kacała, O.
Sładeczek, F.
Powiązania:
https://bibliotekanauki.pl/articles/392160.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Ceramiki i Materiałów Budowlanych
Tematy:
wypał klinkieru
zapotrzebowanie energii
surowiec
skład
popiół lotny
żużel
redukcja emisji CO2
clinker burning
energy demand
raw material
composition
fly ash
slag
CO2 emission reduction
Opis:
Popioły lotne oraz żużel hutniczy, które zaliczane są do odpadów z procesów termicznych, mogą stanowić wartościowe składniki zestawu surowcowego do wytwarzania klinkieru portlandzkiego. W pracy wykonano badania termiczne (TG, DSC, EGA) zestawu surowcowego złożonego z naturalnych materiałów oraz zestawu surowcowego zawierającego odpady z procesów termicznych (popioły lotne wapienne, granulowany żużel wielkopiecowy oraz żużel konwertorowy). Wykorzystując dwie metody obliczeniowe, wyznaczono wartości ciepła klinkieryzacji badanych zestawów. Wykazano korzystny wpływ dodatku surowców wtórnych do zestawu surowcowego powodujący obniżenie ciepła klinkieryzacji oraz redukcję emisji CO2.
Waste from thermal processes such as fly ashes and blast furnace slag may be used as a valuable components of raw mixes for the manufacturing of Portland clinker. In the paper the thermal analysis (TG, DSC, EGA) of raw mix consisting of natural materials and a raw mix which includes secondary raw materials from thermal processes (calcareous fly ash, granulated blast furnace slag and converter slag) was performed. Using two different methods of calculation, the heat of clinker formation of tested raw mixes was determined. Beneficial effect of the addition of secondary raw materials to a raw mix on the reduction of heat of clinker formation and decrease of CO2 emissions has been proven.
Źródło:
Prace Instytutu Ceramiki i Materiałów Budowlanych; 2016, R. 9, nr 27, 27; 35-43
1899-3230
Pojawia się w:
Prace Instytutu Ceramiki i Materiałów Budowlanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Innowacyjne rozwiązania w zakresie redukcji CO2 w przemyśle materiałów budowlanych
Innovative solutions for CO2 reduction in building materials industry
Autorzy:
Gawlicki, M.
Glinicki, M. A.
Powiązania:
https://bibliotekanauki.pl/articles/392298.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Ceramiki i Materiałów Budowlanych
Tematy:
przemysł budowlany
materiał budowlany
rozwiązania innowacyjne
emisja CO2
redukcja emisji
technologia Novacem
cement wieloskładnikowy
skład ziarnowy
building industry
building material
innovative solution
CO2 emission
emission limitation
Novacem technology
blended cement
particle size distribution
Opis:
Od kilku lat jednym z najważniejszych problemów do rozwiązania, na które oczekuje przemysł mineralnych materiałów wiążących, jest znaczące ograniczenie emisji do atmosfery dwutlenku węgla. Służące temu celowi działania obejmują między innymi zarówno działania polegające na zastąpieniu cementów bazujących na klinkierze portlandzkim innymi rodzajami spoiw mineralnych o zbliżonych właściwościach użytkowych, jak też ograniczanie zawartości klinkieru portlandzkiego w cementach powszechnego użytku i zastępowanie go innymi składnikami aktywnymi w układach cement–woda. Celem artykułu jest przedstawienie obydwu rodzajów działań podejmowanych w okresie ostatnich dwóch lat, a zwłaszcza zaprezentowanie szeroko reklamowanej i nagradzanej technologii, której produktem finalnym są magnezjowe materiały wiążące nowej generacji.
For a number of years the mineral binders industry has been looking for an effective solution to reduce CO2 emission into the atmosphere. The major efforts have been focused in replacement of cements based on Portland clinker by other type of mineral binders of similar functional properties, and also in reduction of clinker content in common cements by its substitution with other active components in cement-water systems. The objective of this paper is a review of research driven by the aforementioned concepts and published during last two years. Particular attention was paid to an emerging, highly advertized technology of new generation of cement based on magnesium oxide and magnesium carbonates, called „carbon negative cement”.
Źródło:
Prace Instytutu Ceramiki i Materiałów Budowlanych; 2012, R. 5, nr 9, 9; 44-54
1899-3230
Pojawia się w:
Prace Instytutu Ceramiki i Materiałów Budowlanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nowe wyzwania wynikające z pakietu klimatyczno-energetycznego dla przemysłu materiałów budowlanych i ceramicznych
New challenges for ceramic and building material industry resulting from climate and energy package
Autorzy:
Duda, J.
Powiązania:
https://bibliotekanauki.pl/articles/392270.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Ceramiki i Materiałów Budowlanych
Tematy:
pakiet klimatyczno-energetyczny
emisja CO2
oszczędność energii
przemysł materiałów budowlanych
przemysł ceramiczny
zużycie energii
wykorzystanie ciepła odpadowego
climate and energy package
CO2 emission
energy conservation
building materials industry
ceramic industry
energy consumption
waste heat utilization
Opis:
Wysoka energochłonność przemysłu materiałów budowlanych i ceramicznych, wynikająca głównie z wysokotemperaturowych procesów wypalania, powoduje, że praktycznie większość działań innowacyjnych ukierunkowana jest na ograniczenie energochłonności i szkodliwego oddziaływania tych procesów na środowisko. Działalność ta jest zgodna z głównym celem klimatycznym Unii Europejskiej, tj. walką z globalnym ociepleniem, zawartym m.in. w pakiecie klimatycznym 3 x 20. Zgodnie z założeniami Komisji Europejskiej opublikowanymi w 2013 r. w Zielonej księdze, zakłada się zmianę obowiązującego do 2020 r. pakietu 3 x 20. W nowej propozycji dotyczącej polityki klimatyczno-energetycznej do 2030 r., Komisja Europejska ogranicza pakiet do dwóch celów, tj. redukcji gazów cieplarnianych o 40% oraz do 27% udziału odnawialnych źródeł energii w końcowym wytworzeniu energii. Założone ok. 40% ograniczenie emisji gazów cieplarnianych wymaga od przemysłu, który ze względu na proces technologiczny charakteryzuje się wysokimi emisjami CO2, poszukiwania nowych technik wytwarzania, które pozwolą zrealizować te cele. W artykule przedstawiono obecny stan realizacji pakietu 3 x 20 oraz możliwości (rezerwy techniczne i technologiczne) wypełnienia nowych obowiązujących po 2020 r. celów polityki klimatycznej.
High energy consumption of ceramic and building material industry resulting mainly from high-temperature burning processes causes that virtually most innovative actions are aimed at the reduction of energy consumption and harmful environmental impact of these processes. This activity corresponds to main European Union climate goal, which is the fight against global warming presented in Package 3 x 20. According to EC assumptions published in 2013 in Green Book, the „20–20–20” package in force to 2020 will be changed. In the new proposal on climate and energy policy to year 2030, European Commission limits package to two goals, i.e. reduction of greenhouse gases by 40% and increase of RES share in final energy consumption to 27%. Set 40% reduction of greenhouse gas emission requires from industries, which due to the technological process have high emission levels of CO2, to search for new production techniques that would allow to meet these goals. This paper presents current status of implementation of main directions of „20–20–20” and possibilities (technical and technological reserves) of satisfying new goals of climate policy in force from 2020.
Źródło:
Prace Instytutu Ceramiki i Materiałów Budowlanych; 2014, R. 7, nr 17, 17; 7-20
1899-3230
Pojawia się w:
Prace Instytutu Ceramiki i Materiałów Budowlanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Przemysł materiałów budowlanych wobec problemów współczesnej cywilizacji
Building materials industry and the challenges of modern civilization
Autorzy:
Stoch, L.
Powiązania:
https://bibliotekanauki.pl/articles/907103.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Ceramiki i Materiałów Budowlanych
Tematy:
przemysł materiałów budowlanych
ochrona środowiska
efektywność energetyczna
zanieczyszczenie powietrza
emisja CO2
energia odnawialna
rozwój technologiczny
topienie szkła
optymalizacja procesu
topienie plazmowe
stłuczka szklana
building materials industry
environment protection
energy efficiency
air pollution
CO2 emission
renevable energy
technology development
glass melting
process optimization
plasma melting
cullet
Opis:
Redukcja szkodliwych emisji i zmniejszenie zużycia energii, stosownie do wymagań UE, wyznaczać będzie kierunki postępu technologicznego w przemyśle materiałów budowlanych. Równocześnie wymagania te stwarzają zapotrzebowanie na nowe, dotąd niewytwarzane materiały proekologiczne dla wielu dziedzin. Przykładem jest szkło dla energetyki odnawialnej. Stanowi ono szanse rozwoju, którą producenci materiałów budowlanych powinni wykorzystać.
The target emissions and energy consumption reduction according to EC requirements will determine the technological progress in the building materials industry at the nearest future. On the other hand they create opportunity for new and sophisticated products which will allow energy saving, and CO2 reduction in many fields of human activity. Glasses for solar energy production are the example.
Źródło:
Prace Instytutu Ceramiki i Materiałów Budowlanych; 2014, R. 7, nr 17, 17; 67-78
1899-3230
Pojawia się w:
Prace Instytutu Ceramiki i Materiałów Budowlanych
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies