Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Tchórzewski, Jerzy" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Algorytm Ewolucyjny inspirowany informatyką kwantową do poprawy parametrów modelu neuralnego wyznaczania cen na Towarowej Giełdzie Energii Elektrycznej notowanych na RDN
Evolutionary Algorithm inspired by quantum information technology to improve the parametrers of the neural piice setting model on the Polish Power Exchange traded on the DAM
Autorzy:
Tchórzewski, Jerzy
Ruciński, Dariusz
Powiązania:
https://bibliotekanauki.pl/articles/377068.pdf
Data publikacji:
2019
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
Algorytm Ewolucyjny
dekwantyzacja
kwantowa liczba mieszana
kwantyzacja
obliczenia kwantowe
Rynek Dnia Następnego
Sztuczna Sieć Neuronowa
Towarowa Giełda Energii Elektrycznej
Opis:
Artykuł zawiera wybrane wyniki badań dotyczące istoty i implementacji Algorytmu Ewolucyjnego inspirowanego obliczeniami kwantowymi do poprawy parametrów modelu neuralnego wyznaczającego ceny na Towarowej Giełdzie Energii Elektrycznej. Do uczenia Sztucznej Sieci Neuronowej modelu systemu wykorzystano dane liczbowe notowane na Rynku Dnia Następnego w okresie od 01 stycznia 2015 r. do 30 czerwca 2015 r. Szczególną uwagę zwrócono na sposób systemowego tworzenie Populacji Początkowej oraz na sposób systemowego tworzenie funkcji krzepkości (funkcji przystosowania), a na tej bazie na metodę kwantyzacji, dekwantyzacji i obliczeń kwantowych przeprowadzonych z wykorzystaniem pojęcia kwantowej liczby mieszanej i rachunku wektorowo-macierzowego. Uzyskano znaczącą poprawę modelu neuralnego wspomaganego algorytmem ewolucyjnym inspirowanym kwantowo w stosunku do modelu neuralnego wspomaganego algorytmem ewolucyjnym bez inspiracji kwantowej.
The paper contains selected research results on the nature and implementation of the Evolutionary Algorithm inspired by quantum computation to improve the parameters of the neural model determining prices at the Polish Power Exchange. To learn the Artificial Neural Network system model, the figures quoted on the Commodity Electricity Market of the Day-Ahead Market were used in the period from January 1, 2018 to June 30, 2018. Particular attention was paid to the systemic creation of the Initial Population and the systemic creation of the function of solidification (function adaptation), and on this basis, the quantization, dequantization and quantum computation methods carried out using the quantum concept of a mixed number. Significant improvement of the neural model supported by quantum-inspired evolutionary algorithm in relation to the model without quantum inspiration was obtained.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2019, 100; 121-132
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Model symulacyjny systemu Towarowej Giełdy Energii Elektrycznej z wykorzystaniem wspomaganej ewolucyjnie oraz inspirowanej kwantowo Sztucznej Sieci Neuronowej
Simulation model of the Polish Power Exchange System using evolutionally assisted and quantum-inspired Artificial Neural Network
Autorzy:
Tchórzewski, Jerzy
Ruciński, Dariusz
Powiązania:
https://bibliotekanauki.pl/articles/376414.pdf
Data publikacji:
2020
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
badania komparatystyczne
badania symulacyjne
obliczenia kwantowe
sztuczne sieci neuronowe
towarowa giełda energii elektrycznej
Opis:
Utworzono wspomaganą ewolucyjnie oraz inspirowaną kwantowo Sztuczną Sieć Neuronową, którą zaimplementowano w Simulinku na bazie danych Rynku Dnia Następnego Towarowej Giełdy Energii Elektrycznej. Dane wejściowe, wagi i biasy poddano kwantyzacji. Kwantowe obliczenia quasi-równoległe przeprowadzono na bazie 100 wygenerowanych kwantowych liczb mieszanych za pomocą metody kwantyzacji na bazie stanów czystych |0> i |1>, a uzyskane w wyniku obliczeń kwantowe liczby mieszane poddano dekwantyzacji za pomocą Sztucznej Sieci Neuronowej (SSN). Model symulacyjny składający się ze wspomaganej ewolucyjnie oraz kwantowo inspirowanej Sztucznej Sieci Neuronowej, oprócz badań symulacyjnych, umożliwia przeprowadzanie badań komparatystycznych uzyskiwanych sygnałów z danymi rzeczywistymi oraz z danymi wyjściowymi z perceptronowej Sztucznej Sieci Neuronowej. Wyniki badań wskazują na wysoką dokładność przeprowadzanego eksperymentu.
An evolutionary-assisted and quantum-inspired Artificial Neural Network was created, which was implemented in Simulink on the Day-Ahead Market of the Polish Power Exchange. Input data, weights and bias were quantized. Quantum quasi-parallel calculations were carried out on the basis of 100 generated quantum mixed numbers using the quantization method based on pure states |0> and |1>, and the resulting quantum mixed numbers were dequantized using another Artificial Neural Network. The implemented simulation model consists of evolutionarily assisted and quantum-inspired Artificial Neural Network, which in addition to simulation studies allows conducting comparative studies of obtained signals with real data and with output data from the perceptron Artificial Neural Network. The test results indicate the high accuracy of the experiment.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2020, 104; 55-64
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies