Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "extended Kalman filter" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Introduction to the Special Section on State and Parameter Estimation Methods for Sensorless Drives
Autorzy:
Barut, M.
Hinkkanen, M.
Orlowska-Kowalska, T.
Powiązania:
https://bibliotekanauki.pl/articles/1193677.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
sensorless control
extended Kalman filter
unscented Kalman filter
MRAS estimators
neural networks
Opis:
This short article constitutes an introductory part of the Special Section (SS) on State and Parameter Estimation Methods in Sensorless Drives. In the current issue of the journal, the first part of this section is published. Accepted articles are focussed mainly on estimation of the state variables and parameters for vector-controlled induction motor (IM) drives, using different concepts, such as different types of Kalman filters (KFs) and model reference adaptive systems (MRASs). The KF was also proposed for brushless DC motor (BLDC). Also, neural networks (NNs) have been proposed for mechanical state variables’ estimation of the drive system with elastic couplings.
Źródło:
Power Electronics and Drives; 2018, 3, 38; 111-113
2451-0262
2543-4292
Pojawia się w:
Power Electronics and Drives
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Simulation analysis of extended Kalman filter applied for estimating position and speed of a brushless DC motor
Autorzy:
Chojowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/1193591.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
extended Kalman filter
brushless DC motor
covariance matrix
sensorless control
BLDC
Opis:
The purpose of this paper was to present a method for the estimation of the rotor speed and position of brushless DC (BLDC) motor. The BLDC motor state equations were developed, and the model was discretised. Extended Kalman filter has been designed to observe specific states from the state vector, needed for the sensorless control (rotor position) and to determine the speed, which may be useful to use as a feedback for the controller. A test was carried out to determine the noise covariance matrices in a simulation manner.
Źródło:
Power Electronics and Drives; 2018, 3, 38; 145-155
2451-0262
2543-4292
Pojawia się w:
Power Electronics and Drives
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Extended Kalman filter based speed-sensorless load torque and inertia estimations with observability analysis for induction motors
Autorzy:
Zerdali, E.
Barut, M.
Powiązania:
https://bibliotekanauki.pl/articles/1193483.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
extended Kalman filter
induction motor
load torque estimation
inertia estimation
speed-sensorless control
observability analysis
Opis:
This paper aims to introduce a novel extended Kalman filter (EKF) based estimator including observability analysis to the literature associated with the high performance speed-sensorless control of induction motors (IMs). The proposed estimator simultaneously performs the estimations of stator stationary axis components of stator currents and rotor fluxes, rotor mechanical speed, load torque including the viscous friction term, and reciprocal of total inertia by using measured stator phase currents and voltages. The inertia estimation is done since it varies with the load coupled to the shaft and affects the performance of speed estimation especially when the rotor speed changes. In this context, the estimations of all mechanical state and parameters besides flux estimation required for high performance control methods are performed together. The performance of the proposed estimator is tested by simulation and real-time experiments under challenging variations in load torque and velocity references; and in both transient and steady states, the quite satisfactory estimation performance is achieved.
Źródło:
Power Electronics and Drives; 2018, 3, 38; 115-127
2451-0262
2543-4292
Pojawia się w:
Power Electronics and Drives
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dynamic performance of estimator-based speed sensorless control of induction machines using extended and unscented Kalman filters
Autorzy:
Horváth, K.
Kuslits, M.
Powiązania:
https://bibliotekanauki.pl/articles/1193590.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
induction machine
speed sensorless control
field-oriented control
FOC
non-linear state estimation
load torque estimation
extended Kalman filter
EKF
unscented Kalman filter
UKF
Opis:
This paper presents an estimator-based speed sensorless field-oriented control (FOC) method for induction machines, where the state estimator is based on a self-contained, non-linear model. This model characterises both the electrical and the mechanical behaviours of the machine and describes them with seven state variables. The state variables are estimated from the measured stator currents and from the known stator voltages by using an estimator algorithm. An important aspect is that one of the state variables is the load torque and, hence, it is also estimated by the estimator. Using this feature, the applied estimator-based speed sensorless control algorithm may be operated adequately besides varying load torque. In this work, two different variants of the control algorithm are developed based on the extended and the unscented Kalman filters (EKF, UKF) as state estimators. The dynamic performance of these variants is tested and compared using experiments and simulations. Results show that the variants have comparable performance in general, but the UKF-based control provides better performance if a stochastically varying load disturbance is present.
Źródło:
Power Electronics and Drives; 2018, 3, 38; 129-144
2451-0262
2543-4292
Pojawia się w:
Power Electronics and Drives
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies