Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "głębokie uczenie" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Zwiększenie rozdzielczości obrazów termowizyjnych metodą sieci neuronowych głębokiego uczenia
Increasing of Thermal Images Resolution Using Deep Learning Neural Networks
Autorzy:
Więcek, Piotr
Sankowski, Dominik
Powiązania:
https://bibliotekanauki.pl/articles/2068620.pdf
Data publikacji:
2021
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
resztkowe sieci neuronowe
głębokie uczenie
superrozdzielczość
obraz termograficzny
PyTorch
residual neural networks
deep learning
super-resolution
thermographic image
Opis:
W pracy przedstawiono nowy algorytm zwiększenia rozdzielczości obrazów termowizyjnych. W tym celu zintegrowano sieć resztkową z modułem współdzielonego filtru z podpróbkowaniem obrazu KSAC (ang. Kernel-Sharing Atrous Convolution). Uzyskano znaczne skrócenie czasu działania algorytmu przy zachowaniu dużej dokładności. Sieć neuronową zrealizowano w środowisku PyTorch. Przedstawiono wyniki działania proponowanej nowej metody zwiększenia rozdzielczości obrazów termowizyjnych o wymiarach 32×24, 160×120 i 640×480 dla skali 2-6.
The article presents a new algorithm for increasing the resolution of thermal images. For this purpose, the residual network was integrated with the Kernel-Sharing Atrous Convolution (KSAC) image sub-sampling module. A significant reduction in the algorithm’s complexity and shortening the execution time while maintaining high accuracy were achieved. The neural network has been implemented in the PyTorch environment. The results of the proposed new method of increasing the resolution of thermal images with sizes 32x24, 160×120 and 640×480 for scales up to 6 are presented.
Źródło:
Pomiary Automatyka Robotyka; 2021, 25, 3; 31--35
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Głębokie sieci rekurencyjne i konwolucyjne w detekcji wad spawalniczych dla systemów z robotem przemysłowym
Deep Recurrent and Convolutional Networks in the Detection of Welding Defects for Systems with an Industrial Robot
Autorzy:
Adamczak, Arkadiusz
Powiązania:
https://bibliotekanauki.pl/articles/2068632.pdf
Data publikacji:
2021
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
głębokie uczenie maszynowe
szeregi czasowe
stanowisko zrobotyzowane
detekcja wad spoin
deep learning
time series
robotic station
detection of weld defects
Opis:
Podczas procesów spawania metodą MIG/MAG w produkcji wielkoseryjnej na stanowiskach zrobotyzowanych, często wymagana jest automatyczna kontrola jakości wykonanego spawu. Określanie defektów spawalniczych jest trudne, a powód ich wystąpienia nie zawsze jest znany. Jednym z warunków poprawnie wykonanej spoiny jest stabilność podczas procesu spawania, co przekłada się na ciągłość i zwiększenie ogólnej wydajności produkcji. W artykule przedstawiono wyniki badań nad systemem detekcji defektów spoiny łączącego analizę i klasyfikację szeregów czasowych parametrów spawania dla metody MIG/MAG wraz z równoczesną analizą i klasyfikacją danych obrazowych spoiny dla systemów zrobotyzowanych. Wykorzystane zostały konstrukcje głębokich sieci neuronowych rekurencyjnych i konwolucyjnych. Przedstawiono również konstrukcję sieci neuronowej zawierającej dwa wejścia systemowe, umożliwiającej w jednym czasie klasyfikację zdjęcia spoiny wraz z szeregiem czasowym dla zastosowania w stanowisku zrobotyzowanym. Przedstawione wyniki prac badawczych otrzymano podczas realizacji projektu „Opracowanie metody bazującej na zastosowaniu głębokich sieci neuronowych do inspekcji wizyjnej połączeń spawanych w toku prac B+R” finansowanego z Wielkopolskiego Regionalnego Programu Operacyjnego na lata 2014–2020 i realizowanego w zakładzie ZAP-Robotyka Sp. z o.o. w Ostrowie Wielkopolskim.
During MIG/MAG welding processes in large-scale production on robotic stations, automatic quality control of the weld is often required. Determining welding defects is difficult and the reason for their occurrence is not always known. One of the conditions for a correctly made weld is stability during the welding process, which translates into continuity and increase in overall production efficiency. The article presents the results of research on the creation of a weld defect detection system combining the analysis and classification of time series of welding parameters for the MIG/MAG method along with the simultaneous analysis and classification of weld image data for robotic systems. For this purpose, the structures of deep recursive and convolutional neural networks were used. The design of a neural network with two system inputs allowing for the classification of the weld photo together with the time series for use in a robotic station is also presented. The research results presented in this article were obtained during the implementation of the project entitled „Development of a method based on the use of deep neural networks for visual inspection of welded joints in the course of R&D works” implemented at the company ZAP-Robotyka Sp. z o.o. in Ostrów Wielkopolski.
Źródło:
Pomiary Automatyka Robotyka; 2021, 25, 2; 17--22
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metoda detekcji wad spawalniczych w stanowisku zrobotyzowanym z wykorzystaniem głębokiej sieci neuronowej
Detection Method of Welding Defects in a Robotic Station Using the Deep Neural Network
Autorzy:
Adamczak, Arkadiusz
Powiązania:
https://bibliotekanauki.pl/articles/2068644.pdf
Data publikacji:
2021
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
głębokie uczenie maszynowe
Przemysł 4.0
stanowisko zrobotyzowane
detekcja wad spoin
deep learning
Industry 4.0
robotic station
detection of weld defects
Opis:
Współczesna automatyzacja i robotyzacja procesów produkcyjnych wymaga nowych i szybkich metod kontroli jakości produktu. W przypadku spawania łukowego w systemach zrobotyzowanych, gdzie proces produkcyjny przebiega wielkoseryjnie istotną rzeczą jest szybka kontrola poprawności wykonanego spawu. System w oparciu o dane wizualne powinien być zdolny automatycznie określić czy dana spoina spełnia podstawowe wymagania jakościowe a tym samym mieć możliwość zatrzymania procesu w razie zidentyfikowanych wad. W artykule przedstawiono wyniki badań nad stworzeniem wizyjnej metody oceny poprawności wykonanej spoiny w oparciu o głęboką sieć neuronową klasyfikującą, lokalizującą i segmentującą wady spawalnicze. Zaproponowana metoda detekcji została rozbudowana przez zastosowanie połączenia kamery systemu wizyjnego z sześcioosiowym robotem przemysłowym w celu umożliwienia detekcji większej liczby wad spawalniczych oraz pozycjonowania w sześciowymiarowej przestrzeni pracy. Przedstawione w artykule wyniki prac badawczych otrzymano podczas realizacji projektu „Opracowanie metody bazującej na zastosowaniu głębokich sieci neuronowych do inspekcji wizyjnej połączeń spawanych w toku prac B+R” realizowanego w zakładzie ZAP-Robotyka Sp. z o.o. w Ostrowie Wielkopolskim.
Modern automation and robotization of production processes requires new and fast methods of product quality control. In the case of arc welding in robotic systems, where the production process takes place in large series, it is important to quickly control the correctness of the weld. Based on visual data, the system should be able to automatically determine whether a given weld meets the basic quality requirements, and thus be able to stop the process in the event of identified defects. The article presents the results of research on the creation of a visual method for assessing the correctness of the weld seam based on the deep neural network classifying, locating and segmenting welding defects. The proposed detection method was extended by using a combination of a vision system camera with a six-axis industrial robot in order to enable detection of a larger number of welding defects and positioning in a six-dimensional workspace. The research results presented in this article were obtained during the implementation of the project entitled „Development of a method based on the use of deep neural networks for visual inspection of welded joints in the course of R&D works” implemented at the company ZAP-Robotyka Sp. z o.o. in Ostrów Wielkopolski.
Źródło:
Pomiary Automatyka Robotyka; 2021, 25, 1; 67--72
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep Learning for Small and Tiny Object Detection: A Survey
Przegląd metod uczenia głębokiego w wykrywaniu małych i bardzo małych obiektów
Autorzy:
Kos, Aleksandra
Belter, Dominik
Majek, Karol
Powiązania:
https://bibliotekanauki.pl/articles/27312454.pdf
Data publikacji:
2023
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
Deep Learning
Small Object Detection
Tiny Object Detection
Tiny Object Detection Datasets
Tiny Object Detection Methods
uczenie głębokie
wykrywanie małych obiektów
wykrywanie bardzo małych obiektów
zbiory danych bardzo małych obiektów
metody wykrywania bardzo małych obiektów
Opis:
In recent years, thanks to the development of Deep Learning methods, there has been significant progress in object detection and other computer vision tasks. While generic object detection is becoming less of an issue for modern algorithms, with the Average Precision for medium and large objects in the COCO dataset approaching 70 and 80 percent, respectively, small object detection still remains an unsolved problem. Limited appearance information, blurring, and low signal-to-noise ratio cause state-of-the-art general detectors to fail when applied to small objects. Traditional feature extractors rely on downsampling, which can cause the smallest objects to disappear, and standard anchor assignment methods have proven to be less effective when used to detect low-pixel instances. In this work, we perform an exhaustive review of the literature related to small and tiny object detection. We aggregate the definitions of small and tiny objects, distinguish between small absolute and small relative sizes, and highlight their challenges. We comprehensively discuss datasets, metrics, and methods dedicated to small and tiny objects, and finally, we make a quantitative comparison on three publicly available datasets.
W ostatnich latach, dzięki rozwojowi metod uczenia głębokiego, dokonano znacznego postępu w detekcji obiektów i innych zadaniach widzenia maszynowego. Mimo że ogólne wykrywanie obiektów staje się coraz mniej problematyczne dla nowoczesnych algorytmów, a średnia precyzja dla średnich i dużych instancji w zbiorze COCO zbliża się odpowiednio do 70 i 80 procent, wykrywanie małych obiektów pozostaje nierozwiązanym problemem. Ograniczone informacje o wyglądzie, rozmycia i niski stosunek sygnału do szumu powodują, że najnowocześniejsze detektory zawodzą, gdy są stosowane do małych obiektów. Tradycyjne ekstraktory cech opierają się na próbkowaniu w dół, które może powodować zanikanie najmniejszych obiektów, a standardowe metody przypisania kotwic są mniej skuteczne w wykrywaniu instancji o małej liczbie pikseli. W niniejszej pracy dokonujemy wyczerpującego przeglądu literatury dotyczącej wykrywania małych i bardzo małych obiektów. Przedstawiamy definicje, rozróżniamy małe wymiary bezwzględne i względne oraz podkreślamy związane z nimi wyzwania. Kompleksowo omawiamy zbiory danych, metryki i metody, a na koniec dokonujemy porównania ilościowego na trzech publicznie dostępnych zbiorach danych.
Źródło:
Pomiary Automatyka Robotyka; 2023, 27, 3; 85--94
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies