Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Storage" wg kryterium: Temat


Tytuł:
Initial assessment of the possibility of using ATES technology in Poland by low-temperature heat and cold consumers
Wstępna ocena możliwości wykorzystania technologii ATES w Polsce przez odbiorców niskotemperaturowego ciepła i chłodu
Autorzy:
Miecznik, Maciej
Skrzypczak, Robert
Powiązania:
https://bibliotekanauki.pl/articles/283148.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
Aquifer Thermal Energy Storage
ATES
heat storage in aquifers
underground storage of heat and cold
magazynowanie ciepła w warstwach wodonośnych
podziemne magazynowanie ciepła i chłodu
Opis:
The aim of the article is a preliminary assessment of the possibility of using ATES (Aquifer Thermal Energy Storage) technology for the seasonal storage of heat and cold in shallow aquifers in Poland. The ATES technology is designed to provide low-temperature heat and cold to big-area consumers. A study by researchers from the Delft University of Technology in the Netherlands indicates very favorable hydrogeological and climate conditions in most of Poland for its successful development. To confirm this, the authors used public hydrogeological data, including information obtained from 1324 boreholes of the groundwater observation and research network and 172 information sheets of groundwater bodies (GWBs). Using requirements for ATES systems, well-described in the world literature, the selection of boreholes was carried out in the GIS environment, which allowed aquifers that meet the required criteria to be captured. The preliminary assessment indicates the possibility of the successful implementation of ATES technology in Poland, in particular in the northern and western parts of the country, including the cities of: Gdańsk, Warsaw, Wrocław, Bydgoszcz, Słupsk, and Stargard.
Celem artykułu jest wstępna ocena możliwości wykorzystania w Polsce technologii sezonowego magazynowania ciepła i chłodu w płytkich warstwach wodonośnych (ATES – Aquifer Thermal Energy Storage). Zasadniczym przeznaczeniem technologii ATES jest dostarczanie niskotemperaturowego ciepła i chłodu do odbiorców wielkopowierzchniowych, którzy w ciągu roku wykazują zapotrzebowanie na obie formy ciepła. Badania naukowców z Delft University w Holandii wskazują na bardzo korzystne warunki hydrogeologiczne i klimatyczne na większości obszaru Polski do jej pomyślnego rozwoju. Aby to wstępnie potwierdzić, autorzy wykorzystali ogólnodostępne dane hydrogeologiczne, w tym informacje złożową pozyskaną z 1324 otworów sieci obserwacyjno-badawczej wód podziemnych (SO-BWP) oraz 172 kart informacyjnych jednolitych części wód podziemnych (JCWPd). Korzystając z dobrze opisanych w literaturze światowej wymagań stawianych systemom ATES, przeprowadzono w środowisku GIS selekcję otworów, które ujmują poziomy wodonośne spełniające wymagane kryteria. Wstępna ocena wskazuje na możliwość pomyślnego wdrożenia technologii ATES w Polsce, w szczególności w północnej i zachodniej części kraju, w tym na obszarze takich miast jak Gdańsk, Warszawa, Wrocław, Bydgoszcz, Słupsk i Stargard.
Źródło:
Polityka Energetyczna; 2019, 22, 1; 39-57
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Technika magazynowania energii w ciekłym powietrzu
Liquid air energy storage technology
Autorzy:
Mirek, P.
Powiązania:
https://bibliotekanauki.pl/articles/283042.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
magazynowanie energii w skroplonym powietrzu (LAES) kriogeniczne magazynowanie energii (CES)
skroplone powietrze
liquid air energy storage (LAES)
Cryogenic Energy Storage (CES)
liquid air
Opis:
Zainteresowanie układami magazynowania energii jest naturalną konsekwencją realizacji polityki „20-20-20”, która zgodnie z zapisami Pakietu Energetyczno-Klimatycznego zakłada stopniowe zwiększenie udziału odnawialnych źródeł energii w technologiach produkcji ciepła i elektryczności. Zgodnie z prognozami udział ten w roku 2050 powinien stanowić 57% globalnego zapotrzebowania na energię, przy czym energia z wiatru i słońca stanowić będzie 26% tej wartości. Niestety, zamiana tradycyjnych źródeł wytwarzania elektryczności na źródła rozproszone charakteryzujące się nierównomierną charakterystyką podaży stanowi ogromne wyzwanie dla ca- łego systemu energetycznego. W tej sytuacji jedynym rozwiązaniem pozwalającym na stabilizację pracy sieci jest magazynowanie energii. Dzięki temu w sposób efektywny można rozdzielić procesy wytwarzania i konsumpcji elektryczności, co pozwala na uelastycznienie pracy źródeł wytwarzania. Wśród licznych rozwijanych obecnie technik magazynowania energii, na szczególną uwagę zasługuje technologia kriogeniczna oparta na ciekłym powietrzu (ang. Liquid Air Energy Storage – LAES). W porównaniu z innymi technologiami magazynowania technologia ta wykazuje wiele unikalnych zalet, z których najważniejsze to: niezależność od formacji geologicznych, możliwość zagospodarowania nadprodukcji ciekłego azotu, jak również wykorzystania źródeł o małej egzergii. Technologia LAES jest jedyną technologią magazynowania, która nie wykazuje szkodliwego oraz degradacyjnego oddziaływania na środowisko. Kriogeniczne magazyny energii wykazują pełną zdolność do integracji ze wszystkimi źródłami wytwarzania, mają stosunkowo prostą budowę a co najważniejsze nie wymagają projektowania urządzeń prototypowych znacznie zwiększających ryzyko i nakłady inwestycyjne instalacji. W artykule dokonano wielokryterialnej analizy porównawczej różnych technik magazynowania energii ze szczególnym uwzględnieniem technologii LAES. Opisano podstawowe fazy procesu magazynowania energii w skroplonym powietrzu zwracając uwagę na korzyści wynikające z zastosowania bezpośredniej metody skraplania. Przedstawiono zalety integracji kriogenicznych układów magazynowania z systemem energetycznym oraz możliwości wykorzystania ich w procesie zagospodarowania źródeł energii o niskiej jakości.
The interest in energy storage systems is a natural consequence of the implementation of the “20-20- 20” policy, which, in accordance with the provisions of the Energy and Climate Package assumes a gradual increase in the utilization of renewable energy resources in heat and power energy technologies. As expected, this share in 2050 should constitute 57% of the global demand for energy, but the wind and solar energy will constitute 26% of this value. Unfortunately, the replacement of the conventional power plants with the scattered renewable energy sources characterized by non-uniform characteristics of supply is the big challenge for the whole energy system. In this situation, the only solution to stabilization of the power grid system is to use energy storage systems. These systems are well suited for dispatching the processes of generation and utilization of energy allowing for significantly increasing the flexibility of the power plants. Nowadays, among the large number of developing energy storage technologies, a special attention deserves the liquid air energy technology (LAES). As compared with other energy storage technologies LAES has a number of unique advantages, which are: independence from geological formations, the possibility of utilization of a large surplus of liquid nitrogen as well as of low exergy resources. LAES technology is the only technology of storage, which causes no harmful and degrading impact on the environment. Cryogenic energy storages have ability to integration with all conventional power plants, have relatively simple structure and do not require a utilization of prototype devices, which significantly increase the risk and investment costs. In the paper a multi-criteria comparative analysis of different energy storage technologies with a particular attention on Liquid Air Energy Storage technology has been presented. Basic principles of Liquid Air Energy Storage as well as the benefits of a direct liquefaction method have been discussed. The advantages resulting from integration of the cryogenic energy storage technology with an electric power system as well as utilizing low-quality energy in such systems have been presented.
Źródło:
Polityka Energetyczna; 2016, 19, 1; 73-85
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prospects for energy storage in the world and in Poland in the 2030 horizon
Perspektywy rozwoju magazynowania energii elektrycznej na świecie i w Polsce w horyzoncie roku 2030
Autorzy:
Krupa, K.
Nieradko, Ł.
Haraziński, A.
Powiązania:
https://bibliotekanauki.pl/articles/949528.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
electricity storage
lithium-ion batteries
megatrends in power industry
Polish storage market
magazynowanie energii elektrycznej
bateria litowo-jonowa
megatrendy w energetyce
rynek magazynowania w Polsce
Opis:
The second decade of the 21st century is a period of intense development of various types of energy storage other than pumped-storage hydroelectricity. Battery and thermal storage systems are particularly rapidly developing ones. The observed phenomenon is a result of a key megatrend, i.e. the development of intermittent renewable energy sources (IRES) (wind power, photovoltaics). The development of RES, mainly in the form of distributed generation, combined with the dynamic development of electric mobility, results in the need to stabilize the grid frequency and voltage and calls for new solutions in order to ensure the security of energy supplies. High maturity, appropriate technical parameters, and increasingly better economic parameters of lithium battery technology (including lithium-ion batteries) result in a rapid increase of the installed capacity of this type of energy storage. The abovementioned phenomena helped to raise the question about the prospects for the development of electricity storage in the world and in Poland in the 2030 horizon. The estimated worldwide battery energy storage capacity in 2030 is ca. 51.1 GW, while in the case of Poland it is approximately 410.6 MW.
Druga dekada XXI wieku to okres intensywnego rozwoju magazynowania energii elektrycznej w formach innych niż elektrownie szczytowo-pompowe. Szczególnie szybko rozwijającym się segmentem magazynowania są technologie bateryjne oraz cieplne. Obserwowane zjawisko jest pochodną kluczowego megatrendu, tj. rozwoju odnawialnych źródeł energii (OZE) o nieciągłym charakterze pracy (wiatr, fotowoltaika). Rozwój OZE, przebiegający głównie w modelu rozproszonym, w połączeniu z dynamicznym rozwojem elektromobilności, skutkuje potrzebą stabilizacji parametrów sieci elektroenergetycznej (napięcie, częstotliwość) oraz wymusza podejmowanie nowych rozwiązań w celu zapewnienia bezpieczeństwa dostaw energii. Technologią znajdującą się w odpowiednim stadium dojrzałości, o odpowiednich parametrach technicznych oraz coraz lepszych parametrach ekonomicznych, są baterie litowe (w tym litowo-jonowe), co skutkuje szybkim wzrostem mocy zainstalowanej tego typu magazynów. Przytoczone powyżej zjawiska pozwoliły postawić pytanie o perspektywy rozwoju magazynowania energii elektrycznej na świecie i w Polsce w horyzoncie roku 2030. Oszacowana w niniejszym artykule globalna moc magazynów bateryjnych na świecie w roku 2030 to około 51,1 GW, podczas gdy analogiczna wartość dla Polski wynosi około 410,6 MW.
Źródło:
Polityka Energetyczna; 2018, 21, 2; 19-34
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dotrzymać kroku polityce energetyczno-klimatycznej UE - postęp badań procesów usuwania CO2 z gazów spalinowych
Keep up EU energy policy – the progress of research process to remove CO2 from flue gas
Autorzy:
Więcław-Solny, L.
Tatarczuk, A.
Krótki, A.
Wilk, A.
Śpiewak, D.
Powiązania:
https://bibliotekanauki.pl/articles/282432.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
emisja CO2
usuwanie CO2
CCS Carbon Capture and Storage
MEA
pakiet klimatyczny
strategiczny program badawczy
CO2 emission
CO2 removal
carbon capture and storage (CCS)
Opis:
Konsekwencją przyjętej polityki "klimatycznej" UE (Pakiet klimatyczny - 3*20), mającej na celu obniżenie emisji gazów cieplarnianych szczególnie z dużych źródeł energetyki zawodowej będzie wzrost kosztów wytwarzania energii elektrycznej obarczonej dodatkowymi kosztami zakupu pozwoleń do emisji CO2 - EUA oraz wprowadzania technologii niskoemisyjnych w tym CCS (Carbon Capture and Storage). Kluczowym elementem dla sektora energetycznego staje się rozwój wysokosprawnych niskoemisyjnych technologii węglowych do zastosowania w energetyce zawodowej w najbliższej perspektywie czasowej oraz poznanie stopnia rozwoju technologii pozwalających na redukcję emisji CO2 ze spalin. W artykule przedstawiono krótki przegląd informacji na temat stopnia rozwoju technologii pozwalających na redukcję emisji CO2 z procesów generacji energii elektrycznej w klasycznych blokach węglowych oraz postępu bada? nad procesami usuwania CO2 ze spalin na świecie. W opracowaniu przedstawiono również wstępne wyniki badań procesu usuwania CO2 z gazów metodą absorpcji chemicznej w wodnym roztworze 30% monoetanoloaminy MEA - wpływ wybranych parametrów procesowych (stosunek L/G) na sprawność usuwania CO2. Badania realizowane są w Instytucie Chemicznej Przeróbki Węgla w Zabrzu, w ramach Zadania nr 1: Opracowanie technologii dla wysokosprawnych "zeroemisyjnych" bloków węglowych zintegrowanych z wychwytem CO2 ze spalin, Strategicznego Programu Badawczego - Zaawansowane technologie pozyskiwania energii.
The consequence of the adopted EU climate policy aimed at reducing greenhouse gas emissions especially from large power plants would increase electricity generation costs burdened with additional costs for the purchase of CO2 emission permits – EUA and the introduction of low carbon technologies including CCS (Carbon Capture and Storage). A key element for the energy sector is the development of high-low-emission coal technologies for use in the power industry in the near term. A very important issue is to know the degree of development of technologies to reduce CO2 emissions for use in the power sector in the near term. This article presents a brief overview of information about CO2 removal technologies development to reduce CO2 emissions from electricity generation processes in coal power plants. The preliminary results of the process of removing CO2 from the gas by chemical absorption in an aqueous solution of 30% monoethanolamine MEA – the influence of process parameters (the L/G ratio) for CO2 removal efficiency. Tests are performed at the Institute for Chemical Processing of Coal in Zabrze, as part of Strategic Research Programme – Advanced technologies for energy generation: Development of a technology for highly efficient zero-emission coal-fired power units integrated with CO2 capture.
Źródło:
Polityka Energetyczna; 2012, 15, 4; 111-123
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Akumulacja ciepła w monolitach węglowych dla magazynowania energii - rozważania modelowe
Heat accumulation on energy storage carbon monoliths - model considerations
Autorzy:
Bałys, M. R.
Buczek, B.
Powiązania:
https://bibliotekanauki.pl/articles/283545.pdf
Data publikacji:
2009
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
monolity węglowe
adsorpcja metanolu
magazynowanie ciepła
carbon monoliths
methanol adsorption
energy storage
Opis:
Opierając się na równaniu bilansu ciepła, masy, stanu fazy objetoociowej i zaadsorbowanej zaproponowano model matematyczny pozwalający określić zmiany temperatury monolitów pod wpływem adsorpcji par metanolu. Obliczenia modelowe wykonane dla monolitów otrzymanych: z pylistego węgla aktywnego - AC35 oraz węgli aktywnych otrzymanych w procesie aktywacji chemicznej karbonizatu z węgla kamiennego - ACS i mezofazy pakowej - APM wykazały znaczne różnice we właściwoociach termicznych wystepujące pomiedzy nimi. Stwierdzono najwyższą zdolność do akumulowania ciepła w kolejności dla monolitów ACS i APM, a znacznie niższą dla AC35. Przewidywana różnica temperatur pomiędzy monolitem ACS a AC35 wynosi oko3o 3K. Uzyskano bardzo dobrą zgodność w zdolności do akumulowania ciepła, przewidywanych różnic przyrostu temperatury pomiędzy monolitami i dynamiki tych zmian z wynikami uzyskanymi z pomiaru ciepła zwilżania monolitów metanolem. Zaprezentowane wyniki wskazują na szczególną przydatność monolitów ACS i APM dla układu magazynującego ciepło adsorpcji.
A mathematical model of heat accumulation caused by methanol vapour adsorption on carbon monoliths is presented using equations of heat and mass balances for adsorbed and gas phases. Monoliths were prepared utilizing as raw materials: powdered active carbon (AC35), coal carbonizate (ACS) and pitch mesophase (APM). Model calculations result in substantial differences in their thermal properties. The highest accumulation of heat was for monolith ACS, similar value was found for APM, but a much lower for AC35. Predicted temperature difference between monoliths ACS and AC35 amounts to 3K. Correlations were found between heat accumulation, differences of temperature, heat of methanol immersion and the dynamics of temperature changes for all monoliths. The results confirm thatmonolithsACS and APMare particularly useful for energy storage systems.
Źródło:
Polityka Energetyczna; 2009, 12, 1; 119-127
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Koncepcja i modelowanie układu magazynowania energii z wykorzystaniem pieca metalurgicznego do topienia aluminium
Concept and modeling of the storage system using a metallurgical furnace
Autorzy:
Grabski, A.
Lasek, J.
Zuwała, J.
Powiązania:
https://bibliotekanauki.pl/articles/283725.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
magazynowanie energii
piec metalurgiczny
inercyjne wygładzanie przebiegów
energy storage
metallurgical furnace
inertial smoothing
Opis:
W pracy przedstawiono koncepcję, model matematyczny oraz obliczenia symulacyjne dynamiki układu magazynowania energii elektrycznej wykorzystującego ciepło zgromadzone w rozgrzanym metalu, w metalurgicznym piecu do topienia aluminium. Przyjęto, iż do odzysku energii elektrycznej zastosowany będzie układ pracujący na zasadzie organicznego cykl Rankine’a (ORC). Analizie poddano również właściwości obiegu pośredniego pomiędzy układem magazynowania a odzysku. Przedstawiono przykładowy scenariusz ładowania przy uwzględnieniu rzeczywistej charakterystyki czasowej konwersji energii elektrycznej za pomocą farmy wiatrowej. Założono przy tym hipotetyczną charakterystykę zapotrzebowania na energię elektryczną przez użytkownika. Przedstawiono wyniki obliczeń numerycznych, z których wynika, że układ taki znakomicie nadaje się do stabilizacji zmiennej charakterystyki wytwarzania w odniesieniu do zapotrzebowania odbiorców na energię elektryczną oraz ciepło. Przedstawiono wyniki przebiegów czasowych ładowania pieca energią uzyskaną z farmy wiatrowej oraz rozładowania przez hipotetycznego użytkownika. Podano również charakterystyki zmienności ciepła akumulowanego w piecu, temperatury czynnika magazynującego, sprawności. W obliczeniach uwzględniono również wpływ oporu cieplnego izolacji na charakterystyki magazynowania energii. Zauważono, iż kluczowymi parametrami wpływającymi na sprawność układu są charakterystyka użytkowania układu (głównie czas oczekiwania na rozładowanie oraz ilość zmagazynowanej energii) oraz jakość izolacji termicznej pieca. a odzysku. Przedstawiono przykładowy scenariusz ładowania przy uwzględnieniu rzeczywistej charakterystyki czasowej konwersji energii elektrycznej za pomocą farmy wiatrowej. Założono przy tym hipotetyczną charakterystykę zapotrzebowania na energię elektryczną przez użytkownika. Przedstawiono wyniki obliczeń numerycznych, z których wynika, że układ taki znakomicie nadaje się do stabilizacji zmiennej charakterystyki wytwarzania w odniesieniu do zapotrzebowania odbiorców na energię elektryczną oraz ciepło. Przedstawiono wyniki przebiegów czasowych ładowania pieca energią uzyskaną z farmy wiatrowej oraz rozładowania przez hipotetycznego użytkownika. Podano również charakterystyki zmienności ciepła akumulowanego w piecu, temperatury czynnika magazynującego, sprawności. W obliczeniach uwzględniono również wpływ oporu cieplnego izolacji na charakterystyki magazynowania energii. Zauważono, iż kluczowymi parametrami wpływającymi na sprawność układu są charakterystyka użytkowania układu (głównie czas oczekiwania na rozładowanie oraz ilość zmagazynowanej energii) oraz jakość izolacji termicznej pieca.
The paper presents a concept, a mathematical model and simulation calculations of the dynamics of the storage of electric energy using heat collected in heated metal in a metallurgical melting furnace of aluminum. It was assumed that a system based on the organic Rankine cycle (ORC) would be used for the recovery of electricity. The properties of the intermediate circuit between the storage system and the recovery were also analyzed. An example charging scenario is presented, taking the actual time characteristics of the electricity conversion using a wind farm into account. This assumes the hypothetical characteristics of the user’s electricity demand. The results of the numerical calculations show that this arrangement is excellent for stabilizing the variable production curve with respect to the demand for electricity and heat. The results of furnace charging with the energy obtained from the wind farm and the discharge by the hypothetical user are presented. The characteristics of the heat accumulation in the furnace, the temperature of the storage medium and the efficiency are also given. The calculations also take the influence of insulation resistance on the energy storage characteristics into account. It has been noted that the key parameters influencing the efficiency of the system are the characteristics of the system (mainly the waiting time for the discharge and the amount of stored energy) and the quality of thermal insulation of the furnace.
Źródło:
Polityka Energetyczna; 2017, 20, 4; 117-128
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Doświadczenia operacyjne instalacji aminowego usuwania CO2 ze spalin – od skali laboratoryjnej do pilotowej
Operational experiences of different scale Carbon Capture plants
Autorzy:
Więcław-Solny, L.
Krótki, A.
Tatarczuk, A.
Stec, M.
Powiązania:
https://bibliotekanauki.pl/articles/283144.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
emisja CO2
usuwanie CO2
CCS Carbon Capture and Storage
monoetanoloamina-MEA
strategiczny program badawczy
CO2 emission
reduction CO2
absorption
MEA – monoethanolamine
carbon capture and storage (CCS)
strategic research programme
Opis:
Polityka klimatyczna UE ukierunkowana jest na obniżenie emisji szkodliwych związków do środowiska. W przypadku sektora energetycznego, od lat kładzie się duży nacisk na obniżenie emisji tlenków siarki SOx, tlenków azotu NOx, pyłów oraz CO2. W związku z wprowadzeniem systemu handlu emisjami CO2 , coraz większego znaczenia nabierają technologie obniżające emisje gazów cieplarnianych, w tym technologie wychwytu i składowania CO2 (CCS – Carbon Capture and Sequestration). W artykule przedstawiono postęp prac nad procesem usuwania CO2 ze spalin bloków węglowych, realizowanych w ramach Strategicznego Programu Badawczego „Zaawansowane technologie pozyskiwania energii: Opracowanie technologii dla wysoko sprawnych „zero-emisyjnych” bloków węglowych zintegrowanych z wychwytem CO2 ze spalin”. Przedstawiono doświadczenia zespołu realizującego badania procesu wychwytu CO2 na instalacjach w skali laboratoryjnej, półtechnicznej i pilotowej. Zaprezentowano wyniki testów procesu wychwytu CO2 ze spalin z zastosowaniem instalacji pilotowej aminowego usuwania CO2 o wydajności 1 t CO2/d. W ramach realizowanych badań pilotowych prowadzonych w Elektrowni Łaziska w 2013 r., wykonano ponad 80 testów, w ramach których udało się wydzielić 20 ton dwutlenku węgla ze spalin kotłowych. Przeanalizowano wpływ innowacyjnych rozwiązań konstrukcyjnych instalacji pilotowej. Potwierdzono wysoką sprawność procesu wychwytu CO2 z zastosowaniem absorpcji chemicznej w roztworze MEA przekraczającą 90% oraz możliwość obniżenia zużycia ciepła w procesie regeneracji sorbentu poprzez integrację cieplną obiegów w obszarze instalacji wychwytu CO2.
EU’s climate policy is focused on the reduction of harmful emissions. The energy sector put a great emphasis on the reductionof emissions of sulfur oxides SOx, nitrogen oxides NOx, carbon monoxide CO, particulates and carbon dioxide CO2 . Mitigation of CO2 emissions is the challenge of the power sector, because just under 80% of the electricity generated in Poland is powered by coal-fired power plants. Technologies reducing greenhouse gas emissions, including technologies, CO2 capture and storage (CCS – Carbon Capture and Sequestration), are becoming increasingly important, according to the introduction of CO2 emissions trading system – EU ETS. The Carbon Capture and Storage (CCS) technology is one of the key ways to reconcile the rising demand for fossil fuels, with the need to reduce CO2 emissions. Globally CCS is likely to be a necessity in order to meet the Union’s greenhouse gas reduction targets Post-combustion process like amine based chemical absorption CO2 is ideally suitable for conventional power plants. There are still only a few facilities worldwide in which this technology is actively being practiced and the demonstration phase of CCS technology needs more activity – the biggest one in Europe have 280 t CO2 /d yield and is located in Mongstad in Norway. This paper presents the progress of the CO2 capture from the flue gas research implemented within the framework of the Strategic Research Programme “ Advanced technologies for energy generation: Development of a technology for highly efficient zero-emission coal-fired power unitswith integrated CO2 capture”. Some of the experience of the researchers performing CO2 capture plants on a laboratory, semi-technical and pilot scale are presented. First pilot tests of CO2 capture from coal- fired flue gas in Poland were carried out in cooperation with TAURON Polska Energia and Tauron Wytwarzanie, at Laziska Power Plant for six months of 2013 year. The Pilot Plant was connected to the hard coal-fired boiler. The plant is able to receive about 200m3/h of real flue gas that contains different types of pollutants such as SOx, NOx and particles. The Pilot Plant consists of flue gas pre-treatment unit – deep desulfurization, and CO2 capture unit – consist of absorber and desorber columns. The Pilot Plant operates 24 h per day, 5 days per week. Because the CO2 concentration in flue gas to be treated consequently fluctuates round the clock operation allows for extended evaluation of the solvent, and capture process efficiency on real work parameters of the boiler. Over 500 h, 81 tests and more than 20 t of separated CO2 were achieved during the operation with 30 wt% MEA (monoethanolamine). The unique design of the Pilot Plant allowed for the evaluation of various process modifications. Process modifications such as split stream and heat recuperation had been evaluated with the plant. The effect of heat recovery – recuperation can easily be seen in Fig.5. Achieved efficiency of CO2 separation was above 85% and the lowest noticed energy demand of sorbent regeneration was 3,6 MJ/kg CO2 – for MEA as a sorbent, and heat recuperation evaluated – Fig. 3. Those power required for regeneration comprise the energy requirements of the process subsequently determining the operating and maintenance costs – about 50–60% of OPEX. The main noticed operational problem of the CO2 capture plants was corrosion of the some devices, that means how important is the right material choosing during plant designing stage.
Źródło:
Polityka Energetyczna; 2014, 17, 3; 393-404
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Management of surplus electricity production from unstable renewable energy sources using Power to Gas technology
Zagospodarowanie nadwyżki produkcji energii elektrycznej z niestablinych odnawialnych źródeł energii z wykorzystaniem technologii Power to Gas
Autorzy:
Komorowska, A.
Gawlik, L.
Powiązania:
https://bibliotekanauki.pl/articles/283497.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
wind energy
Power to Gas technology
energy storage
energetyka wiatrowa
Power to Gas
magazynowanie energii
Opis:
Increasing the share of energy production from renewable sources (RES) plays a key role in the sustainable and more competitive development of the energy sector. Among the renewable energy sources, the greatest increase can be observed in the case of solar and wind power generation. It should be noted that RES are an increasingly important elements of the power systems and that their share in energy production will continue to rise. On the other hand the development of variable generation sources (wind and solar energy) poses a serious challenge for power systems as operators of unconventional power plants are unable to provide information about the forecasted production level and the energy generated in a given period is sometimes higher than the demand for energy in all of the power systems. Therefore, with the development of RES, a considerable amount of the generated energy is wasted. The solution is energy storage, which makes it possible to improve the management of power systems. The objective of this article is to present the concept of electricity storage in the form of the chemical energy of hydrogen (Power to Gas) in order to improve the functioning of the power system in Poland. The expected growth in the installed capacity of wind power plants will result in more periods in which excess energy will be produced. In order to avoid wasting large amounts of energy, the introduction of storage systems is necessary. An analysis of the development of wind power plants demonstrates that the Power to Gas concept can be developed in Poland, as indicated by the estimated installed capacity and the potential amount of energy to be generated. In view of the above, the excess electricity will be available for storage in the form of chemical energy of hydrogen, which in turn can be used to supply gas distribution networks, generate electricity during periods of increased electricity demand, or to refuel vehicles.
Zwiększenie udziału produkcji energii ze źródeł odnawialnych (OZE) odgrywa kluczową rolę w zrównoważonym i bardziej konkurencyjnym rozwoju sektora energii. Wśród odnawialnych źródeł energii największy wzrost można zaobserwować w przypadku wytwarzania energii słonecznej i wiatrowej. Należy zauważyć, że OZE są coraz ważniejszym elementem systemów elektroenergetycznych i że ich udział w produkcji energii będzie nadal wzrastał. Z drugiej strony rozwój niestabilnych źródeł wytwarzania (elektrowni wiatrowych i fotowoltaiki) stanowi poważne wyzwanie dla systemów energetycznych, ponieważ operatorzy niekonwencjonalnych elektrowni nie są w stanie dostarczyć informacji o prognozowanym poziomie produkcji, a zapotrzebowanie na energię elektryczną jest często niższe od ilości energii wytworzonej w danym okresie. Dlatego wraz z rozwojem OZE tracona jest znaczna część wytworzonej energii. Rozwiązaniem jest magazynowanie energii, co pozwoliłoby na usprawnienie zarządzania systemami energetycznymi. Celem niniejszego artykułu jest przedstawienie koncepcji magazynowania energii elektrycznej w postaci energii chemicznej wodoru (Power to Gas) w celu poprawy funkcjonowania systemu elektroenergetycznego w Polsce. W związku z oczekiwanym wzrostem mocy zainstalowanej w elektrowniach wiatrowych należy się spodziewać, że w systemie będzie coraz więcej okresów, w których wytwarzana będzie nadwyżka energii. Aby uniknąć marnowania dużych ilości energii, konieczne jest wprowadzenie systemów magazynowania energii. Analiza rozwoju elektrowni wiatrowych pokazuje, że koncepcja Power to Gas może być rozwijana w Polsce, o czym świadczy szacowana moc zainstalowana i potencjalna ilość energii do wygenerowania. W związku z nadwyżką energii elektrycznej będzie dostępna do magazynowania w postaci energii chemicznej wodoru, która z kolei może być wykorzystana do zasilania sieci dystrybucyjnych gazu, wytwarzania energii elektrycznej w okresach zwiększonego zapotrzebowania na energię elektryczną lub do tankowania pojazdów.
Źródło:
Polityka Energetyczna; 2018, 21, 4; 43-64
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wielokryterialna analiza współpracy hybrydowego systemu wytwórczego z systemem elektroenergetycznym
Multi-citeria analysis of the cooperation of the hybrid and electrical power systems
Autorzy:
Ceran, B.
Sroka, K.
Powiązania:
https://bibliotekanauki.pl/articles/283735.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
hybrydowe systemy wytwórcze
ogniwa paliwowe
magazynowanie energii
hybrid power generation systems
fuel cells
energy storage
Opis:
W referacie zaprezentowano wyniki wielokryterialnej analizy współpracy hybrydowego systemu wytwórczego (HSW) składającego się z turbin wiatrowych, paneli fotowoltaicznych oraz magazynu energii elektrolizer – ogniwo paliwowe typu PEM z systemem elektroenergetycznym. Przedstawiono równania bilansowe opisujące rozpływy mocy w analizowanym systemie hybrydowym. W analizie wielokryterialnej przyjęto następujące scenariusze: bazowy S-I – układ hybrydowy zasila odbiorcę o profilu komunalnym o maksymalnym poborze mocy 60 kW i rocznym zapotrzebowaniu na energię elektryczną w ilości 340 MWh w trybie off-grid, scenariusze S-II, S-III, S-IV – system elektroenergetyczny pokrywa 25%, 50%, 75% zapotrzebowania na energię przez odbiorcę. Jako kryteria oceny rozpatrywanych scenariuszy przyjęto: zużycie paliwa (wodoru) dodatkowego (back-up) przez hybrydowy system wytwórczy (kryterium energetyczne), jednostkowy koszt wytwarzania energii elektrycznej przez hybrydowy system wytwórczy (kryterium ekonomiczne), emisja dwutlenku węgla podczas pracy (kryterium środowiskowe) oraz stopień wykorzystania mocy zamówionej w systemie przez odbiorcę (kryterium energetyczne). Przebadano wpływ wag wyżej wymienionych kryteriów na wynik końcowy analizy wielokryterialnej.
The paper presents the results of a multi-criteria analysis of cooperation between the hybrid power generation system of wind turbines, photovoltaic modules and a PEM fuel cell with an electrolyzer as energy storage with an electrical power system. The balance equations that describe the load flow in the analyzed hybrid power generation system were presented. Four work scenarios were analyzed and compared: scenario S-I: the hybrid power generation system supplies the receiver of the a municipal profile with a maximum power consumption of 60 kW and an annual demand for electric energy of 340 MWh, without a power system, scenarios S-II, S-III, S-IV: electrical power system supplies 25%, 50% and 75% of the energy load. The following criteria were adopted for the evaluation scenarios: unit hydrogen consumption by hybrid power generation system for the purposes of backup (energy criterion), unit cost of energy produced by a hybrid power generation system (economic criterion), unit emission of carbon dioxide – CO2 (environmental criterion), capacity utilization of power ordered by the customer from the power system (energy criterion). The influence of the criteria weights on the result of the multi-criteria analysis were analyzed.
Źródło:
Polityka Energetyczna; 2016, 19, 4; 37-50
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A comparative analysis of energy storage technologies
Analiza porównawcza technologii magazynowania energii elektrycznej
Autorzy:
Ceran, B.
Powiązania:
https://bibliotekanauki.pl/articles/282826.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
energy storage
fuel cells
hydrogen
lithium-ion battery
magazynowanie energii
ogniwo paliwowe
wodór
akumulator litowo-jonowy
Opis:
The paper describes factors influencing the development of electricity storage technologies. The results of the energy analysis of the electric energy storage system in the form of hydrogen are presented. The analyzed system consists of an electrolyzer, a hydrogen container, a compressor, and a PEMFC fuel cell with an ion-exchange polymer membrane. The power curves of an electrolyzer and a fuel cell were determined. The analysis took the own needs of the system into account, i.e. the power needed to compress the produced hydrogen and the power of the air compressor supplying air to the cathode channels of the fuel cell stack. The characteristics describing the dependence of the efficiency of the energy storage system in the form of hydrogen as a function of load were determined. The costs of electricity storage as a function of storage capacity were determined. The energy aspects of energy accumulation in lithium-ion cells were briefly characterized and described. The efficiency of the charge/discharge cycle of lithium-ion batteries has been determined. The graph of discharge of the lithium-ion battery depending on the current value was presented. The key parameters of battery operation, i.e. the Depth of Discharge (DoD) and the State of Charge (SoC), were determined. Based on the average market prices of the available lithium-ion batteries for the storage of energy from photovoltaic cells, unit costs of electrochemical energy storage as a function of the DoD parameter were determined.
W referacie opisano czynniki wpływające na rozwój technologii magazynowania energii elektrycznej. Przedstawiono wyniki analizy energetycznej systemu magazynowania energii elektrycznej w postaci wodoru. Analizowany system składa się z elektrolizera, zbiornika wodoru, kompresora, oraz systemu ogniw paliwowych z jonowymienną membraną polimerową PEMFC. Wyznaczono krzywe mocy elektrolizera oraz ogniwa paliwowego. W analizie uwzględniono potrzeby własne systemu, tj. moc potrzebną na sprężenie wyprodukowanego wodoru oraz moc kompresora powietrza dostarczającego powietrze do kanałów katodowych stosu ogniw paliwowych. Wykreślono charakterystykę przedstawiającą zależność sprawności systemu magazynującego energię w postaci wodoru w funkcji obciążenia. Wyznaczono koszty magazynowania energii w postaci wodoru w funkcji pojemności magazynu. Krótko scharakteryzowano oraz opisano energetyczne aspekty akumulacji energii za pomocą baterii litowo-jonowych. Zdefiniowano sprawność cyklu ładowania/rozładowania akumulatorów litowo jonowych. Przedstawiono wykres rozładowania akumulatora litowo jonowego w zależności od wartości prądu. Zdefiniowano parametry charakteryzujące pracę akumulatora tj. głębokość rozładowania DoD (and. Depth of discharge) oraz stan naładowania SoC (ang. State of Charge). Na podstawie średnich cen rynkowych dostępnych akumulatorów litowo jonowych przeznaczonych do magazynowania energii z instalacji fotowoltaicznych wyznaczono jednostkowe koszty elektrochemicznego magazynowania energii elektrycznej w funkcji parametru DoD.
Źródło:
Polityka Energetyczna; 2018, 21, 3; 97-110
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Managing the production of natural gas using gas storage in Poland
Wykorzystanie podziemnych do zarządzania produkcją gazu magazynów gazu ziemnego w Polsce
Autorzy:
Kosowski, P.
Stopa, J.
Rychlicki, S.
Powiązania:
https://bibliotekanauki.pl/articles/283257.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
underground gas storage
production optimization
working capacity calculation
podziemne magazynowanie gazu
optymalizacja wydobycia
kalkulacja pojemności czynnej
Opis:
Managing natural gas exploitation which is subject to seasonal changes necessitates gas storage in the periods of lower demand to maintain the stability of gas production. Bearing in mind the natural seasonal character of gas consumption in Poland, it is necessary to use definite working gas volume of underground gas storage facilities (UGS) to maintain a suitable level of gas production from domestic sources in the periods of low gas consumption The main aim of the paper is to investigate the impact of gas storage on gas production strategy from domestic fields based on the example of Poland, and to calculate the amount of gas which should be stored to optimize gas production. The method of calculation, presented in this paper, has been applied to the historical data of methane-rich and nitrogen-rich gas supply and demand in Poland. The storage capacity needed for providing stable production, calculated according to formulas presented in this article was about 1.42 billion m3 of methane-rich natural gas in the last year, which means that 47.7% of yearly domestic production was stored. Apart from the methane-rich system, two nitrogen-rich gas subsystems are operating in Poland. Those gas systems are regional closed systems, i.e. without the possibility of arbitrarily supplementing with gas deliveries from other transmission systems. The UGS were not used for storing nitrogen-rich gas in the past, therefore production from nitrogen-rich gas fields was increased in the winter and lowered during summer months. At present PGNiG S.A. has at its disposal two nitrogen-rich gas storages: UGS Daszewo and UGS Bonikowo. Working capacity needed for regulating the production of nitrogen-rich gas and calculated according to presented formulas is about 200 million m3. The use of UGS enables stable exploitation of methane-rich gas fields and steady production levels in gas processing plants. In addition no major fluctuations were observed in the aspect of high seasonality of natural gas consumption (related to climate and the structure of the gas consumers in Poland). In the summer season methane-rich gas imports exceed demand and its flexibility is strongly limited, which results from the realization of contracts, especially the obligation of receive minimum annual and summer amounts of gas, and technical parameters of the transmission network. By using methane-rich UGS in the analyzed period there was neither correlation between the monthly amount of production and consumption of high-methane gas, nor between the size of production and temperature. In the case of the closed nitrogen-rich gas system there have recently been large fluctuations caused by not using UGS. Since then a new UGS Bonikowo has come into use, thanks to which production could be, to a considerable degree, stabilized.
Wykorzystanie magazynów gazu jest niezbędnym czynnikiem pozwalającym na prawidłową eksploatację złóż gazu ziemnego. W okresach zwiększonego popytu magazyny ułatwiająjego zaspokojenie, a w czasie niskiego zapotrzebowania umożliwiają stabilizację produkcji. Biorąc pod uwagę silną sezonowość konsumpcji gazu ziemnego w Polsce istnieje potrzeba przeznaczenia określonej wielkości pojemność czynnych podziemnych magazynów gazu na regulację krajowego wydobycia. Głównym celem tego artykułu jest pokazanie wpływu magazynowania gazu na przebieg eksploatacji krajowych złóż gazu ziemnego oraz kalkulacja ilości gazu, który powinien być zmagazynowany w celu optymalizacji krajowego wydobycia. Na podstawie historycznych danych dotyczących wydobycia i konsumpcji gazu ziemnego w Polsce i z wykorzystaniem metody kalkulacji pojemności czynnych, zaprezentowanej w niniej szym artykule, obliczone zostały pojemności czynne podziemnych magazynów gazu, niezbędne do regulacji krajowego wydobycia gazu wysokometanowego. Wyniosły około 1,4 mld m3, co oznacza, że około 48% rocznego wydobycia wysokometanowego gazu ziemnego powinno być magazynowane. Brak wykorzystania podziemnych magazynów gazu skutkowałby koniecznością znacznego ograniczania wydobycia krajowego i produkcji gazu w odazotowniach w miesiącach letnich, uniemożliwiałby realizację zawartych umów kontraktowych oraz powodował deficyt gazu w miesiącach zimowych. Oprócz systemu gazu wysokometanowego w Polsce eksploatowane są dwa podsystemy gazu zaazotowanego. Systemy gazu zaazotowanego są regionalnymi systemami zamkniętymi, tzn. nie istnieje możliwość dowolnego uzupełnienia dostaw gazu z krajowego (lub innego) systemu przesyłowego. Ponieważ do niedawna nie eksploatowano PMG na gaz zaazotowany wydobycie ze złóż gazu zaazotowanego było zwiększane w okresie zimowym i zmniejszane w lecie. Obecnie jednak PGNiG S.A. dysponuje dwoma magazynami na gaz zaazotowany: PMG Daszewo (system gazu Ls) i PMG Bonikowo (system gazu Lw). Pojemności, niezbędne do regulacji wydobycia ze złóż podłączonych do podsystemu gazu zaazotowanego Lw skalkulowane przez autorów niniejszej pracy wynoszą około 200 mlnnm3. Dzięki wykorzystaniu podziemnych magazynów wydobycie ze złóż gazu wysokometanowego i produkcja w odazotowniach w Polsce ma stabilny przebieg i nie wykazuje silnych wahań pomimo bardzo silnej sezonowości zużycia gazu ziemnego, wynikającej m.in. z warunków klimatycznych w Polsce oraz ze struktury odbiorców gazu. W przypadku zamkniętego systemu gazu zaazotowanego Lw do niedawna występowały silne wahania wydobycia, co było konsekwencją braku wykorzystywania podziemnych magazynów gazu. Od niedawna w tym systemie funkcjonuje PMG Bonikowo, co pozwoliło na znaczną stabilizację wydobycia.
Źródło:
Polityka Energetyczna; 2013, 16, 4; 285-296
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Liberalizacja rynku gazu ziemnego a rozwój podziemnych magazynów gazu w Polsce
The liberalization of the natural gas market and the development of underground natural gas storage facilities in Poland
Autorzy:
Kaliski, M.
Frączek, P.
Szurlej, A.
Powiązania:
https://bibliotekanauki.pl/articles/283673.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
podziemne magazyny gazu
trzeci pakiet liberalizacyjny
gaz ziemny
underground natural gas storage
third liberalization package
natural gas
Opis:
Problematyka zwiększenia udziału gazu ziemnego w krajowej strukturze źródeł energii nabiera coraz większego znaczenia w kontekście zobowiązań międzynarodowych Polski. W szczególności należy wskazać wymogi, jakie na nasz kraj nakładają pakiet energetyczno-klimatyczny oraz III pakiet liberalizacyjny. Wymagania tych pakietów wskazują na konieczność zmiany sposobu funkcjonowania krajowego gazownictwa. Bez przeprowadzenia zmiany trudne będzie zwiększenie znaczenia tej branży w krajowym sektorze energii. Szczególną rolę w działaniach nakierowanych na zwiększenie znaczenia gazu ziemnego ma doprowadzenie do zwiększenia pewności dostaw gazu ziemnego poprzez racjonalne kształtowanie struktury źródeł dostaw gazu dla krajowych odbiorców oraz przez rozbudowę krajowej infrastruktury gazowniczej, w tym infrastruktury służącej do magazynowania gazu ziemnego. Realizacja tych działań jest warunkiem ograniczenia niepewności przerw w dostawach gazu ziemnego dla krajowych odbiorców oraz wpłynie na zwiększenie znaczenia gazu ziemnego w krajowej strukturze źródeł energii.
The question of an increased share of natural gas in Poland’s structure of energy sources is gaining significance in view of the country’s international commitments. These are in particular the energy and climate package as well as the third liberalization package. The packages necessitate some changes in the functioning of the domestic gas market. Without reform it will be difficult to increase the role of this branch in Poland’s energy sector. In order to boost the use of gas, its supplies need to be guaranteed through a rationally shaped structure of internal sources of delivery and through a development of gas infrastructure which involves natural gas storage facilities. Only when the above conditions aremet, will the threat of interrupted supply be reduced and, subsequently, the role of gas in Poland’s energy structure will increase.
Źródło:
Polityka Energetyczna; 2010, 13, 2; 199-218
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Czy CCS może być tańszy? - W poszukiwaniu nowych sorbentów CO2
Will CCS be cheap? - New CO2 sorbents wanted
Autorzy:
Więcław-Solny, L.
Ściążko, M.
Tatarczuk, A.
Krótki, A.
Wilk, A.
Powiązania:
https://bibliotekanauki.pl/articles/283074.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
emisja CO2
usuwanie CO2
CCS Carbon Capture and Storage
monoetanoloamina-MEA
aktywatory
strategiczny program badawczy
"zero-emisyjne" bloki węglowe
CO2 emission
CO2 removal
carbon capture and storage (CCS)
MEA
amina based sorbents
advanced technology
Opis:
Zagadnienia związane z obniżeniem emisji CO2 do atmosfery stały się szczególnie ważne dla sektora energetycznego w związku z polityką klimatyczną UE i przyjęciem przez Parlament Europejski Pakietu Klimatycznego w grudniu 2008 r. Konsekwencją polityki "klimatycznej" będzie wzrost kosztów wytwarzania energii elektrycznej w związku z koniecznością wprowadzania technologii CCS (Carbon Capture and Storage), a co zatem idzie - znaczny wzrost cen energii na rynku. W opracowaniu dokonano krótkiej charakterystyki metod usuwania CO2 ze spalin (post combustion) oraz identyfikacji kosztów technologii CCS. W artykule przedstawiono również wstępne wyniki badań sorbentów CO2 prowadzonych w ramach realizacji Zadania nr 1 Strategicznego Programu Badawczego - Zaawansowane technologie pozyskiwania energii.
Currently, the Polish energy sector is facing a number of serious challenges due to obligation to reducing CO2 emission by 2020, while maintaining a high level of energy security. The paper presents analysis of CCS technology costs based on ZEP cost reports and selected results of work in the Strategic Research Programme - Advanced technologies for energy generation: Development of a technology for highly efficient zero-emission coal-fired power units integrated with CO2 capture. Themain goal of this Programme is the implementation of the EU '3x20'Strategy. Improve CO2 amina based solvents via chemical modifications to improve loading, efficiency, are the subject of Institute for Chemical Processing of Coal (PPC) interest.
Źródło:
Polityka Energetyczna; 2011, 14, 2; 441-453
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Simulation of the use of a heat accumulator in combined heat and power plants
Symulacja wykorzystania akumulatora ciepła w elektrociepłowni
Autorzy:
Jastrzębski, P.
Saługa, P. W.
Powiązania:
https://bibliotekanauki.pl/articles/282843.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
energy production
energy storage
consumption forecasting
Monte Carlo simulation
produkcja energii
magazynowanie energii
prognozowanie zużycia
symulacja Monte Carlo
Opis:
The sustainable management of energy production and consumption is one of the main challenges of the 21st century. This results from the threats to the natural environment, including the negative impact of the energy sector on the climate, the limited resources of fossil fuels, as well as the unstability of renewable energy sources – despite the development of technologies for obtaining energy from the: sun, wind, water, etc. In this situation, the efficiency of energy management, both on the micro (dispersed energy) and macro (power system) scale, may be improved by innovative technological solutions enabling energy storage. Their effective implementation enables energy storage during periods of overproduction and its use in the case of energy shortages. These challenges cannot be overestimated. Modern science needs to solve various technological issues in the field of storage, organizational problems of enterprises producing electricity and heat, or issues related to the functioning of energy markets. The article presents the specificity of the operation of a combined heat and power plant with a heat accumulator in the electricity market while taking the parameters affected by uncertainty into account. It was pointed out that the analysis of the risk associated with energy prices and weather conditions is an important element of the decision-making process and management of a heat and power plant equipped with a cold water heat accumulator. The complexity of the issues and the number of variables to be analyzed at a given time are the reason for the use of advanced forecasting methods. The stochastic modeling methods are considered as interesting tools that allow forecasting the operation of an installation with a heat accumulator while taking the influence of numerous variables into account. The analysis has shown that the combined use of Monte Carlo simulations and forecasting using the geometric Brownian motion enables the quantification of the risk of the CHP plant’s operation and the impact of using the energy store on solving uncertainties. The applied methodology can be used at the design stage of systems with energy storage and enables carrying out the risk analysis in the already existing systems; this will allow their efficiency to be improved. The introduction of additional parameters of the planned investments to the analysis will allow the maximum use of energy storage systems in both industrial and dispersed power generation.
Zrównoważone zarządzanie produkcją i zużyciem energii stanowi jedno z naczelnych wyzwań XXI wieku. Wiąże się ono z zagrożeniami stanu środowiska przyrodniczego m.in. wskutek negatywnego wpływu energetyki na klimat, ograniczoności zasobów paliw kopalnych, a także niestabilności produkcji energii z wykorzystaniem źródeł odnawialnych – pomimo rozwijających się technologii pozyskania energii ze słońca, wiatru, wody, itp. W takiej sytuacji jednym ze sposobów poprawy efektywności gospodarki energetycznej – zarówno w skali mikro (energetyka rozproszona), jak i makro (system elektroenergetyczny), mogą być innowacyjne rozwiązania technologiczne umożliwiające magazynowanie energii. Ich skuteczna implementacja pozwoli na jej gromadzenie w okresach nadprodukcji i wykorzystanie w sytuacjach niedoboru. Wyzwania te są nie do przecenienia – przed współczesną nauką staje konieczność rozwiązywania różnego rodzaju zagadnień technologicznych w zakresie magazynowania, problemów organizacyjnych przedsiębiorstw wytwarzających energię elektryczną i ciepło, czy kwestii dotyczących funkcjonowania rynków energii. W artykule przedstawiono specyfikę funkcjonowania elektrociepłowni z magazynem ciepła na rynku energii elektrycznej w odniesieniu do związanych z tym parametrów obarczonych niepewnością. Zwrócono uwagę, że istotnym elementem procesu decyzyjnego i sterowania elektrociepłownią wyposażoną w niskotemperaturowy wodny akumulator ciepła – jako systemem – jest analiza ryzyka związanego z cenami energii oraz warunkami atmosferycznymi. Złożoność zagadnień, liczba zmiennych, jakie należy przeanalizować w danym czasie skłania do zastosowania zaawansowanych metod prognozowania. Uznano, że interesującymi narzędziami, które pozwalają na prognozowanie pracy instalacji z magazynem energii z uwzględnieniem wpływu wielu zmiennych mogą być stochastyczne metody modelowania. W wyniku zrealizowanych badań pokazano, że łączne wykorzystanie symulacji Monte Carlo i prognozowania z wykorzystaniem geometrycznego ruchu Browna umożliwia kwantyfikację ryzyka działalności elektrociepłowni i wpływ zastosowania magazynu energii na rozwiązywanie niepewności. Zastosowana metodyka może zostać wykorzystana zarówno na etapie projektowania systemów z magazynami energii, jak też umożliwić bieżącą analizę ryzyka w systemach już funkcjonujących; pozwoli to na poprawę efektywności ich funkcjonowania. Wprowadzenie do analizy dodatkowych parametrów planowanych inwestycji otworzy perspektywy maksymalneego wykorzystania wielkości magazynów energii zarówno w energetyce zawodowej, jak i rozproszonej.
Źródło:
Polityka Energetyczna; 2018, 21, 2; 75-87
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prospects for the use of energy storage devices in the process of solar energy production
Perspektywy wykorzystania magazynów energii w procesie produkcji energii słonecznej
Autorzy:
Barsegyan, Anzhela A.
Baghdasaryan, Irina R.
Powiązania:
https://bibliotekanauki.pl/articles/2177728.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
accumulators
batteries
thermochemical method
renewable energy sources
storage materials
akumulatory
baterie
metoda termochemiczna
odnawialne źródła energii
materiały magazynowe
Opis:
Every developing country is beginning to rely on “green” energy in connection with environmental problems, including the global warming of our planet. It is expected that in the future, the production of electricity using the conversion of sunlight would take the dominant place in the energy infrastructure around the world. However, photovoltaic converters mainly generate intermittent energy due to natural factors (weather conditions) or the time of day in a given area. Therefore, the purpose of this study is to consider options for eliminating the interrupted nature of the operation of a solar installation through innovative additional applications. To achieve this goal, issues of the prospect of using energy storage devices and the choice of the most efficient and reliable of them are considered, as are the environmental friendliness of accumulators/batteries and the economic benefits of their use. The results of the analyses provide an understanding of the factors of using existing technologies with regard to their technical and economic aspects for use in solar energy. It was determined that the most common and predominant types of energy storage are lithium-ion and pumped storage plants. Such accumulation systems guarantee high efficiency and reliability in the operation of solar installation systems, depending on the scale of the solar station. Storage devices that are beginning to gain interest in research are also considered – storage devices made of ceramics of various kinds and thermochemical and liquid-air technologies. This study contributes the development of an energy-storage system for renewable energy sources in the field of technical and economic optimization.
Każdy kraj rozwijający się zaczyna polegać na „zielonej” energii w związku z problemami środowiskowymi, w tym globalnym ociepleniem naszej planety. Oczekuje się, że w przyszłości produkcja energii elektrycznej z wykorzystaniem konwersji światła słonecznego zajmie nadrzędne miejsce w infrastrukturze energetycznej na całym świecie. Jednak konwertery fotowoltaiczne generują energię głównie w sposób przerywany ze względu na czynniki naturalne (warunki pogodowe) lub porę dnia na danym terenie. Dlatego celem niniejszego opracowania jest rozważenie możliwości wyeliminowania przerywanej pracy instalacji solarnej poprzez innowacyjne aplikacje dodatkowe. Aby osiągnąć ten cel, rozważane są kwestie perspektywy wykorzystania magazynów energii oraz wyboru najbardziej wydajnych i niezawodnych z nich, a także akumulatorów/baterii w aspekcie ich oddziaływania na środowisko i korzyści ekonomicznych z ich użytkowania. Wyniki analiz pozwalają na zrozumienie czynników wykorzystania istniejących technologii, ich technicznych i ekonomicznych aspektów wykorzystania w energetyce słonecznej. Stwierdzono, że najpowszechniejszymi i dominującymi rodzajami magazynowania energii są elektrownie litowo-jonowe oraz elektrownie szczytowo-pompowe. Takie układy akumulacyjne gwarantują wysoką sprawność i niezawodność działania systemu instalacji solarnej, w zależności od skali stacji solarnej. Rozważane są również urządzenia magazynujące, które zaczynają coraz bardziej interesować badaczy – urządzenia magazynujące wykonane z różnego rodzaju ceramiki, w technologii termochemicznej i cieczowo-powietrznej. Niniejsze opracowanie przyczynia się do rozwoju systemu magazynowania energii dla odnawialnych źródeł energii w zakresie optymalizacji technicznej i ekonomicznej.
Źródło:
Polityka Energetyczna; 2022, 25, 4; 135--148
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies