Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Stopa, J" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Managing the production of natural gas using gas storage in Poland
Wykorzystanie podziemnych do zarządzania produkcją gazu magazynów gazu ziemnego w Polsce
Autorzy:
Kosowski, P.
Stopa, J.
Rychlicki, S.
Powiązania:
https://bibliotekanauki.pl/articles/283257.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
underground gas storage
production optimization
working capacity calculation
podziemne magazynowanie gazu
optymalizacja wydobycia
kalkulacja pojemności czynnej
Opis:
Managing natural gas exploitation which is subject to seasonal changes necessitates gas storage in the periods of lower demand to maintain the stability of gas production. Bearing in mind the natural seasonal character of gas consumption in Poland, it is necessary to use definite working gas volume of underground gas storage facilities (UGS) to maintain a suitable level of gas production from domestic sources in the periods of low gas consumption The main aim of the paper is to investigate the impact of gas storage on gas production strategy from domestic fields based on the example of Poland, and to calculate the amount of gas which should be stored to optimize gas production. The method of calculation, presented in this paper, has been applied to the historical data of methane-rich and nitrogen-rich gas supply and demand in Poland. The storage capacity needed for providing stable production, calculated according to formulas presented in this article was about 1.42 billion m3 of methane-rich natural gas in the last year, which means that 47.7% of yearly domestic production was stored. Apart from the methane-rich system, two nitrogen-rich gas subsystems are operating in Poland. Those gas systems are regional closed systems, i.e. without the possibility of arbitrarily supplementing with gas deliveries from other transmission systems. The UGS were not used for storing nitrogen-rich gas in the past, therefore production from nitrogen-rich gas fields was increased in the winter and lowered during summer months. At present PGNiG S.A. has at its disposal two nitrogen-rich gas storages: UGS Daszewo and UGS Bonikowo. Working capacity needed for regulating the production of nitrogen-rich gas and calculated according to presented formulas is about 200 million m3. The use of UGS enables stable exploitation of methane-rich gas fields and steady production levels in gas processing plants. In addition no major fluctuations were observed in the aspect of high seasonality of natural gas consumption (related to climate and the structure of the gas consumers in Poland). In the summer season methane-rich gas imports exceed demand and its flexibility is strongly limited, which results from the realization of contracts, especially the obligation of receive minimum annual and summer amounts of gas, and technical parameters of the transmission network. By using methane-rich UGS in the analyzed period there was neither correlation between the monthly amount of production and consumption of high-methane gas, nor between the size of production and temperature. In the case of the closed nitrogen-rich gas system there have recently been large fluctuations caused by not using UGS. Since then a new UGS Bonikowo has come into use, thanks to which production could be, to a considerable degree, stabilized.
Wykorzystanie magazynów gazu jest niezbędnym czynnikiem pozwalającym na prawidłową eksploatację złóż gazu ziemnego. W okresach zwiększonego popytu magazyny ułatwiająjego zaspokojenie, a w czasie niskiego zapotrzebowania umożliwiają stabilizację produkcji. Biorąc pod uwagę silną sezonowość konsumpcji gazu ziemnego w Polsce istnieje potrzeba przeznaczenia określonej wielkości pojemność czynnych podziemnych magazynów gazu na regulację krajowego wydobycia. Głównym celem tego artykułu jest pokazanie wpływu magazynowania gazu na przebieg eksploatacji krajowych złóż gazu ziemnego oraz kalkulacja ilości gazu, który powinien być zmagazynowany w celu optymalizacji krajowego wydobycia. Na podstawie historycznych danych dotyczących wydobycia i konsumpcji gazu ziemnego w Polsce i z wykorzystaniem metody kalkulacji pojemności czynnych, zaprezentowanej w niniej szym artykule, obliczone zostały pojemności czynne podziemnych magazynów gazu, niezbędne do regulacji krajowego wydobycia gazu wysokometanowego. Wyniosły około 1,4 mld m3, co oznacza, że około 48% rocznego wydobycia wysokometanowego gazu ziemnego powinno być magazynowane. Brak wykorzystania podziemnych magazynów gazu skutkowałby koniecznością znacznego ograniczania wydobycia krajowego i produkcji gazu w odazotowniach w miesiącach letnich, uniemożliwiałby realizację zawartych umów kontraktowych oraz powodował deficyt gazu w miesiącach zimowych. Oprócz systemu gazu wysokometanowego w Polsce eksploatowane są dwa podsystemy gazu zaazotowanego. Systemy gazu zaazotowanego są regionalnymi systemami zamkniętymi, tzn. nie istnieje możliwość dowolnego uzupełnienia dostaw gazu z krajowego (lub innego) systemu przesyłowego. Ponieważ do niedawna nie eksploatowano PMG na gaz zaazotowany wydobycie ze złóż gazu zaazotowanego było zwiększane w okresie zimowym i zmniejszane w lecie. Obecnie jednak PGNiG S.A. dysponuje dwoma magazynami na gaz zaazotowany: PMG Daszewo (system gazu Ls) i PMG Bonikowo (system gazu Lw). Pojemności, niezbędne do regulacji wydobycia ze złóż podłączonych do podsystemu gazu zaazotowanego Lw skalkulowane przez autorów niniejszej pracy wynoszą około 200 mlnnm3. Dzięki wykorzystaniu podziemnych magazynów wydobycie ze złóż gazu wysokometanowego i produkcja w odazotowniach w Polsce ma stabilny przebieg i nie wykazuje silnych wahań pomimo bardzo silnej sezonowości zużycia gazu ziemnego, wynikającej m.in. z warunków klimatycznych w Polsce oraz ze struktury odbiorców gazu. W przypadku zamkniętego systemu gazu zaazotowanego Lw do niedawna występowały silne wahania wydobycia, co było konsekwencją braku wykorzystywania podziemnych magazynów gazu. Od niedawna w tym systemie funkcjonuje PMG Bonikowo, co pozwoliło na znaczną stabilizację wydobycia.
Źródło:
Polityka Energetyczna; 2013, 16, 4; 285-296
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Możliwości zwiększenia wydobycia ropy naftowej w Polsce z zastosowaniem zaawansowanych technologii
Possibilities of production increases from Polish oil fields through the application of advanced technologies
Autorzy:
Wojnarowski, P.
Stopa, J
Janiga, D.
Kosowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/283176.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
niekonwencjonalne złoża ropy naftowej
metody EOR
szczelinowanie hydrauliczne
unconventional oil reservoirs
EOR methods
hydraulic fracturing
Opis:
Przyszłe działania krajowego przemysłu naftowego, w obliczu malejącej ilości nowych, konwencjonalnych odkryć, powinny koncentrować się na dwóch możliwych ścieżkach rozwoju: zwiększeniu produkcji z dotychczas eksploatowanych złóż dzięki zastosowaniu zaawansowanych metod wydobycia oraz rozpoczęciu eksploatacji ze złóż niekonwencjonalnych. Oba te kierunki rozwoju wymagają znacznych nakładów finansowych, a opłacalność realizowanych w ich ramach projektów inwestycyjnych uzależniona jest od warunków makroekonomicznych, w tym szczególnie cen ropy i gazu ziemnego. W niniejszej pracy przedstawiono analizę możliwości aplikacji zaawansowanych metod udostępnienia i wydobycia z polskich złóż ropy naftowej. Zaprezentowano również możliwości zastosowania wybranych metod wydobycia z niekonwencjonalnego złoża ropy. Wyniki analizy pokazują, iż w warunkach polskich najszersze zastosowanie, jeśli chodzi o metody zaawansowane, znaleźć może zatłaczanie gazów w warunkach mieszania, a wśród nich zatłaczanie CO2. Dla złóż niekonwencjonalnych korzystnym rozwiązaniem może być zastosowanie wierceń kierunkowych połączonych z wieloetapowym szczelinowaniem hydraulicznym.
The development of the domestic oil industry, faced with the declining number of new conventional discoveries, should focus on two possible paths: increasing production from currently operated fields through the use of advanced methods of extraction or the start of production from unconventional reservoirs. Both of these ways require substantial capital expenditures, and their profitability heavily depends on macroeconomic conditions, especially the price of crude oil and natural gas. This paper analyses the possibility of the application of advanced recovery methods which are applicable to Polish oil reservoirs. It also shows the applicability of selected methods for the extraction of unconventional oil. The results show that under Polish conditions, when it comes to conventional reservoirs, the widest prospects can be found for gas injection in mixing conditions, among them especially CO2 injection. In the case of unconventional reservoirs, the preferred solution may be the application of directional drilling combined with multi-stage hydraulic fracturing.
Źródło:
Polityka Energetyczna; 2015, 18, 4; 19-28
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The cost of equity in the energy sector
Koszt kapitału własnego przedsięwzięć inwestycyjnych w energetyce
Autorzy:
Saługa, P. W.
Kamiński, J.
Powiązania:
https://bibliotekanauki.pl/articles/283004.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
investments in energy
risk
cost of equity
discount rate adjusted for risk
inwestycje w energetyce
ryzyko
koszt kapitału własnego
stopa dyskontowa dostosowana do ryzyka
Opis:
Taking the importance of time and risk into account has a significant impact on the value of investment projects. Investments in the energy sector are long-term projects and, as such, are burdened with uncertainty associated with the long-term freezing of capital and obtaining the expected return. In the power industry, this uncertainty is increased by factors specific to the sector, including in particular changes in the political and legal environment and the rapid technological development. In the case of discounted cash flow analysis (DCF), commonly used for assessing the economic efficiency of investments, the only parameter expressing investor uncertainty regarding investment opportunities is the discount rate, which increases with the increasing risk of the project. It determines the value of the current project, thus becoming an important criterion affecting investors’ decisions. For this reason, it is of great importance for the assessment of investment effectiveness. This rate, usually in the form of the weighted average cost of capital (WACC), generally includes two elements: the cost of equity capital and borrowed capital. Due to the fluctuant relationship between these two parameters in project financing, performing a WACC analysis in order to compare the risks associated with the different technologies is not completely justified. A good solution to the problem is to use the cost of equity. This article focuses on the analysis of this cost as a measure of risk related to energy investments in the United States, Europe and worldwide.
Istotny wpływ na wartość przedsięwzięć inwestycyjnych ma uwzględnienie wpływu czynnika czasu i ryzyka. Inwestycje w energetyce są projektami długoterminowymi i już jako takie obarczone są niepewnością, związaną z wieloletnim zamrożeniem kapitału i uzyskaniem oczekiwanego zwrotu. W energetyce niepewność tę zwiększają czynniki specyficzne charakterystyczne dla sektora, w tym w szczególności zmiany otoczenia polityczno-prawnego i szybkiego postępu technicznego. W stosowanej powszechnie do oceny efektywności ekonomicznej inwestycji – analizie zdyskontowanych przepływów pieniężnych (discounted cash flow, DCF) – jedynym parametrem wyrażającym niepewność inwestorów w zakresie realizacji inwestycji jest stopa dyskontowa – tym większa, im większe ryzyko przedsięwzięcia. Decyduje ona o wartości bieżącej projektu stając się tym samym istotnym kryterium oddziałującym na decyzje inwestorów. Z tego powodu jej dobór ma doniosłe znaczenie dla oceny efektywności inwestycji. Stopa ta, występując zwykle w postaci średnioważonego kosztu kapitału, WACC – obejmuje zasadniczo dwa elementy: koszt kapitału własnego oraz obcego. Ze względu na różną relację tych dwóch źródeł w finansowaniu projektów przeprowadzanie analiz WACC w celu porównywania ryzyka związanego z różnymi technologiami jest nie do końca czytelne. Dobrym rozwiązaniem problemu jest stosowanie jako wskaźnika kosztu kapitału własnego. Niniejszy artykuł obejmuje analizy tego kosztu jako miernika ryzyka związanego inwestycjami energetycznymi w Stanach Zjednoczonych, Europie i świecie.
Źródło:
Polityka Energetyczna; 2018, 21, 3; 81-96
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies