Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "diesel emission" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Combustion and emissions investigation on low-speed two-stroke marine diesel engine with low sulfur diesel fuel
Autorzy:
Yang, Zhiyuan
Tan, Qinming
Geng, Peng
Powiązania:
https://bibliotekanauki.pl/articles/259117.pdf
Data publikacji:
2019
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
NOx emission
CO2 emission
marine diesel engine
combustion
marine low sulfur diesel fuel
Opis:
With the implementation and expansion of international sulfur emission control areas, effectively promoted the marine low sulfur diesel fuel (MLSDF) used in marine diesel engines. In this study, a large low-speed, two-stroke, cross-head, common rail, electronic fuel injection marine diesel engine (B&W 6S35ME-B9) was used for the study. According to diesel engine’s propulsion characteristics, experiments were launched respectively at 25%, 50%, 75%, 100% load working conditions with marine low sulfur diesel fuel to analyze the fuel consumption, combustion characteristics and emissions (NOx, CO2 , CO, HC) characteristics. The results showed that: Marine diesel engine usually took fuel injection after top dead center to ensure their safety control NOx emission. From 25% to 75% load working condition, engine’s combustion timing gradually moved forward and the inflection points of pressure curve after top dead center also followed forward. While it is necessary to control pressure and reduce NOx emission by delaying fuel injection timing at 100% load. Engine’s in-cylinder pressure, temperature, and cumulative heat release were increased with load increasing. Engine’s CO2 and HC emissions were significantly reduced from 25% to 75% load, while they were increased slightly at 100% load. Moreover, the fuel consumption rate had a similar variation and the lowest was only 178 g/kW·h at 75% load of the test engine with MLSDF. HC or CO emissions at four tests’ working conditions were below 1.23 g/kW·h and the maximum difference was 0.2 or 0.4 g/kW·h respectively, which meant that combustion efficiency of the test engine with MLSDF is good. Although the proportion of NOx in exhaust gas increased with engine’s load increasing, but NOx emissions were always between 12.5 and 13.0 g/kW·h, which was less than 14.4 g/kW·h. Thus, the test engine had good emissions performance with MLSDF, which could meet current emission requirements of the International Maritime Organization.
Źródło:
Polish Maritime Research; 2019, 1; 153-161
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Exhaust gas toxicity problems in ship drives
Autorzy:
Kolanek, C.
Sroka, Z. J.
Walkowiak, W. W.
Powiązania:
https://bibliotekanauki.pl/articles/963451.pdf
Data publikacji:
2007
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
inland navigation
diesel engine
fuel cell
emission
standards
Opis:
The issues discussed in the article include exhaust gas emission, purity requirements and standards, methods of reducing the emission of harmful exhaust gas components, and alternative and future traction drive sources having the form of fuel cells. The discussion often refers to the situation of road transport, a subsystem which severely affects the environment and thus is obliged to intensify the search for solutions.
Źródło:
Polish Maritime Research; 2007, S 1; 46-52
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Experimental study of fuel combustion and emission characteristics of marine diesel engines using advanced fuels
Autorzy:
Changxiong, Li
Hu, Yihuai
Yang, Zy
Guo, Hao
Powiązania:
https://bibliotekanauki.pl/articles/34615637.pdf
Data publikacji:
2023
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
marine diesel engine
PODE
combustion characteristics
emission performance
Opis:
In order to explore the potential application of oxygenated fuels, polyoxymethylene dimethyl ethers (PODE), as an alternative fuel for marine diesel engines, the fuel combustion performance and gas emission characteristics of pure diesel oil, diesel-blended PODE, and pure PODE were tested on a marine diesel engine under different running conditions. The experimental results indicate that oxygen consumption can be reduced by diesel-blended PODE and pure PODE. The in-cylinder pressure and exothermic curve were consistent with the trend of diesel oil. Also, the ignition delay of diesel-blended PODE and pure PODE decreased, and the diffusion rate was accelerated, which helped to improve the combustion performance of diesel engines. Diesel blended PODE and pure PODE reduced the particulate matter (PM) emissions by up to 56.9% and 86.8%, respectively, and CO emissions by up to 51.1% and 56.3%, respectively. NOx emissions were gradually decreased with engine load. CO2 emissions were slightly increased, and the effective fuel consumption was increased up to 48% and 132%, respectively. It was shown that PODE could provide comparable power in a marine diesel engine and improve the fuel combustion and gas emission of the engine as a clean alternative fuel for marine diesel engines.
Źródło:
Polish Maritime Research; 2023, 3; 48-58
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Particulate matter emission from dual fuel diesel engine fuelled with natural gas
Autorzy:
Stelmasiak, Z.
Larisch, J.
Pielecha, J.
Pietras, D.
Powiązania:
https://bibliotekanauki.pl/articles/260157.pdf
Data publikacji:
2017
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
dual fuel engine
natural gas
particulate matter
emission
opacity
Diesel engine
Opis:
The paper presents the results of examination of particulate matter emission from the Diesel engine FPT 1.3 MJT simultaneously fuelled with diesel oil and natural gas CNG. The basic premise for engine adaptation was the addition of a small amount of CNG to reduce exhaust gas opacity and particulate matter emission. At this assumption, diesel oil remained the basic fuel, with contribution amounting to 0,70-0,85 of total energy delivered to the engine. The dual fuel engine was examined using an original controller installed in the Diesel engine FPT 1.3 MJT which controlled the diesel fuel dose. The dose of the injected natural gas was controlled by changing the opening time of gas injectors at constant pressure in the gas collector. The examined issues included the exhaust gas opacity, and the total number and fractional distribution of the emitted particles. The measurements were performed at twenty selected measuring points corresponding to the New European Driving Cycle (NEDC) test. The performed tests have demonstrated a positive effect of gas addition on exhaust gas opacity and particulate matter emission. Depending on test conditions, the exhaust gas opacity was reduced by 10÷92%, and the total number of particles by 30÷40%. The performed tests have revealed that a small addition of gas can reduce the load of the DPF filter, extend its lifetime, and increase engine reliability. Longer time intervals between successive DPF filter regenerations improve ecological properties of the engine.
Źródło:
Polish Maritime Research; 2017, 2; 96-104
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
High quality multi-zone and 3d CFD model of combustion in marine diesel engine cylinder
Autorzy:
Cuper-Przybylska, Dominika
Nguyen, Van Nhanh
Cao, Dao Nam
Kowalski, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/32921247.pdf
Data publikacji:
2023
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
CFD combustion model
large 4-stroke engine
diesel engine
emission
NOx concentration
Opis:
The paper presents a 3D model of the processes taking place in the cylinder of a large 4-stroke marine engine. The model is based on CFD calculations performed on the moving mesh. The modelling range includes the full duty cycle (720° crankshaft position) and the complete geometry of the cylinder with inlet and exhaust ducts. The input data, boundary conditions and validation data were obtained by direct measurements on the real object. Fuel injection characteristics were obtained by Mie scattering measurements in a fixed-volume chamber. The modelling results have been validated in terms of the pressure characteristics of the engine’s cylinder within the entire range of its loads. The mean error did not exceed 1.42% for the maximum combustion pressure and 1.13% for the MIP (Mean Indicated Pressure). The model was also positively validated in terms of the O2 and NOx content of the exhaust gas. The mean error in this case was 1.2% for NOx fractions in the exhaust gas and 0.4% for O2 fractions. The complete model data has been made available in the research data repository on an open access basis.
Źródło:
Polish Maritime Research; 2023, 2; 61-67
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An experimental study of emission and combustion characteristics of marine diesel engine with fuel injector malfunctions
Autorzy:
Kowalski, J.
Powiązania:
https://bibliotekanauki.pl/articles/260092.pdf
Data publikacji:
2016
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
marine diesel engine
exhaust gas composition
toxic emission
laboratory investigation
fuel injector malfunctions
Opis:
The presented paper shows the results of the laboratory study on the relation between chosen malfunctions of a fuel injector and composition of exhaust gas from the marine engine. The object of research is a marine 3-cylinder, four-stroke, direct injection diesel engine with an intercooler system. The engine was loaded with a generator and supercharged. The generator was electrically connected to the water resistance. The engine operated with a load between 50 kW and 250 kW at a constant speed. The engine load and speed, parameters of the turbocharger, systems of cooling, fuelling, lubricating and air exchange, were measured. Fuel injection and combustion pressures in all cylinders of the engine were also recorded. Exhaust gas composition was recorded by using a electrochemical gas analyzer. Air pressure, temperature and humidity were also recorded. Emission characteristics of the engine were calculated according to ISO 8178 standard regulations. During the study the engine operated at the technical condition recognized as „working properly” and with simulated fuel injector malfunctions. Simulation of malfunctions consisted in the increasing and decreasing of fuel injector static opening pressure, decalibration of fuel injector holes and clogging 2 neighboring of 9 fuel injector holes on one of 3 engine cylinders.
Źródło:
Polish Maritime Research; 2016, 1; 77-84
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An experimental study of emission and combustion characteristics of marine diesel engine in case of cylinder Valves leakage
Autorzy:
Kowalski, J.
Powiązania:
https://bibliotekanauki.pl/articles/259195.pdf
Data publikacji:
2015
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
marine diesel engine
exhaust gas composition
emission
exhaust gas valve leakage
inlet valve leakage
Opis:
Presented paper shows the results of the laboratory tests on the relationship between throttling of both air intake duct and exhaust gas duct and a gaseous emission from the marine engine. The object of research is a laboratory, four-stroke, DI diesel engine, operated at loads from 50 kW to 250 kW at a constant speed equal to 750 rpm. During the laboratory tests over 50 parameters of the engine were measured with its technical condition recognized as a „working properly” and with simulated leakage of both air intake valve and exhaust gas valve on the second cylinder. The results of this laboratory research confirm that the leakage of cylinder valves causes no significant changes of the thermodynamic parameters of the engine. Simulated leakages through the inlet and exhaust valve caused a significant increase in fuel consumption of the engine. Valve leakages cause an increase of the exhaust gas temperature behind the cylinder with leakage and behind other cylinders. The exhaust gas temperature increase is relatively small and clearly visible only at low loads of the engine. The increase of the temperature and pressure of the charging air behind the intercooler were observed too. Charging air temperature is significantly higher during the engine operation with inlet valve leakage. The study results show significant increases of the CO, NOx and CO2 emission for all the mentioned malfunctions. The conclusion is that the results of measurements of the composition of the exhaust gas may contain valuable diagnostic information about the technical condition of the air intake duct and the exhaust gas duct of the marine engine.
Źródło:
Polish Maritime Research; 2015, 3; 90-98
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies