Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "dual fuel engine" wg kryterium: Wszystkie pola


Wyświetlanie 1-7 z 7
Tytuł:
Design and experiment of low-pressure gas supply system for dual fuel engine
Autorzy:
Gu, Xiaoyong
Jiang, Guohe
Guo, Zhenghua
Ding, Shangzhi
Powiązania:
https://bibliotekanauki.pl/articles/260121.pdf
Data publikacji:
2020
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
gas supply system
dual fuel engine
spiral-wound heat exchanger
buffer tank
Opis:
A low-pressure gas supply system for dual fuel engines was designed to transport liquid natural gas from a storage tank to a dual fuel engine and gasify it during transportation. The heat exchange area and pressure drop in the spiral- wound heat exchanger, the volume of the buffer tank and the pressure drop in the pipeline of the gas supply system were calculated by programming using Python. Experiments were carried out during the proces of starting and running the dual fuel engine using this gas supply system. Experimental data show that the gas supply system can supply gas stably during the process and ensure the stable operation of the dual fuel engine. The effects of the parameters of natural gas and ethylene glycol solution on the heat exchange area of the spiralwound heat exchanger and the volume of the buffer tank in the gas supply system were studied. The results show that the heat exchange area calculated according to pure methane can adapt to the case of non-pure methane. The temperature difference between natural gas and ethylene glycol solution should be increased in order to reduce the heat exchange area. The heat exchange area selected according to the high pressure of natural gas can adapt to the low pressure of natural gas. The volume of the buffer tank should be selected according to the situation of the minimum methane content to adapt to the situation of high methane content. The main influencing factor in selecting the volume of the buffer tank is the natural gas flow. The results can provide guidance for the design of the gas supply system for dual fuel engines.
Źródło:
Polish Maritime Research; 2020, 2; 76-84
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Economic analysis and the EEXI reduction potential of parallel hybrid dual-fuel engine‒fuel cell propulsion systems for LNG carriers
Autorzy:
Ammar, Nader R.
Almas, Majid
Nahas, Qusai
Powiązania:
https://bibliotekanauki.pl/articles/34614216.pdf
Data publikacji:
2023
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
EEXI
EPL
alternative fuels
LNG carrier
economic analysis
Opis:
One potential solution for reducing carbon dioxide emissions from ships and meeting the Energy Efficiency Existing Ship Index (EEXI) requirements is to use a hybrid propulsion system that combines liquid hydrogen and liquefied natural gas fuels. To improve energy efficiency for diesel-electric dual-fuel ship propulsion systems, an engine power limitation system can also be used. This paper examines the potential use of these systems with regard to several factors, including compliance with EEXI standards set by the International Maritime Organization, fuel ratio optimisation, installation requirements, and economic feasibility. As a case study, an LNG carrier is analysed, with dual-fuel diesel-electric and two hybrid systems adjusted to meet IMO-EEXI requirements with engine power limitation percentages of 25%, 0% (hybrid option 1), and 15% (hybrid option 2), respectively. From an economic standpoint, the liquid hydrogenbased system has competitive costs compared to the dual-fuel diesel-electric system, with costs of 2.1 and 2.5 dollars per kilogram for hybrid system options 1 and 2, respectively.
Źródło:
Polish Maritime Research; 2023, 3; 59-70
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of alcohols to dual – fuel feeding the spark-ignition and self-ignition engines
Autorzy:
Stelmasiak, Z.
Powiązania:
https://bibliotekanauki.pl/articles/258762.pdf
Data publikacji:
2014
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
dual-fuel engine
alcohol
share of methanol
overall efficiency
toxicity
Opis:
This paper concerns analysis of possible use of alcohols for the feeding of self - ignition and spark-ignition engines operating in a dual- fuel mode , i.e. simultaneously combusting alcohol and diesel oil or alcohol and petrol . Issues associated with the requirements for application of bio-fuels were presented with taking into account National Index Targets , bio-ethanol production methods and dynamics of its production worldwide and in Poland. The considerations are illustrated by results of the tests on spark- ignition and self- ignition engines fed with two fuels : petrol and methanol or diesel oil and methanol, respectively. The tests were carried out on a 1100 MPI Fiat four- cylinder engine with multi-point injection and a prototype collector fitted with additional injectors in each cylinder. The other tested engine was a SW 680 six- cylinder direct- injection diesel engine. Influence of a methanol addition on basic operational parameters of the engines and exhaust gas toxicity were analyzed. The tests showed a favourable influence of methanol on combustion process of traditional fuels and on some operational parameters of engines. An addition of methanol resulted in a distinct rise of total efficiency of both types of engines at maintained output parameters ( maximum power and torque ). In the same time a radical drop in content of hydrocarbons and nitrogen oxides in exhaust gas was observed at high shares of methanol in feeding dose of ZI ( petrol) engine, and 2-3 fold lower smokiness in case of ZS ( diesel) engine. Among unfavourable phenomena, a rather insignificant rise of CO and NOx content for ZI engine, and THC and NOx – for ZS engine, should be numbered. It requires to carry out further research on optimum control parameters of the engines. Conclusions drawn from this work may be used for implementation of bio-fuels to feeding the combustion engines.
Źródło:
Polish Maritime Research; 2014, 3; 86-94
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Particulate matter emission from dual fuel diesel engine fuelled with natural gas
Autorzy:
Stelmasiak, Z.
Larisch, J.
Pielecha, J.
Pietras, D.
Powiązania:
https://bibliotekanauki.pl/articles/260157.pdf
Data publikacji:
2017
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
dual fuel engine
natural gas
particulate matter
emission
opacity
Diesel engine
Opis:
The paper presents the results of examination of particulate matter emission from the Diesel engine FPT 1.3 MJT simultaneously fuelled with diesel oil and natural gas CNG. The basic premise for engine adaptation was the addition of a small amount of CNG to reduce exhaust gas opacity and particulate matter emission. At this assumption, diesel oil remained the basic fuel, with contribution amounting to 0,70-0,85 of total energy delivered to the engine. The dual fuel engine was examined using an original controller installed in the Diesel engine FPT 1.3 MJT which controlled the diesel fuel dose. The dose of the injected natural gas was controlled by changing the opening time of gas injectors at constant pressure in the gas collector. The examined issues included the exhaust gas opacity, and the total number and fractional distribution of the emitted particles. The measurements were performed at twenty selected measuring points corresponding to the New European Driving Cycle (NEDC) test. The performed tests have demonstrated a positive effect of gas addition on exhaust gas opacity and particulate matter emission. Depending on test conditions, the exhaust gas opacity was reduced by 10÷92%, and the total number of particles by 30÷40%. The performed tests have revealed that a small addition of gas can reduce the load of the DPF filter, extend its lifetime, and increase engine reliability. Longer time intervals between successive DPF filter regenerations improve ecological properties of the engine.
Źródło:
Polish Maritime Research; 2017, 2; 96-104
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigations of the working process in a dual-fuel low-emission combustion chamber for an FPSO gas turbine engine
Autorzy:
Serbin, Serhiy
Diasamidze, Badri
Dzida, Marek
Powiązania:
https://bibliotekanauki.pl/articles/1585065.pdf
Data publikacji:
2020
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
gas turbine engine
dual-fuel combustion
combustion chamber
liquid fuel
Opis:
This investigation is devoted to an analysis of the working process in a dual-fuel low-emission combustion chamber for a floating vessel’s gas turbine. The low-emission gas turbine combustion chamber with partial pre-mixing of fuel and air inside the outer and inner radial-axial swirlers was chosen as the object of research. When modelling processes in a dualflow low-emission gas turbine combustion chamber, a generalized method is used, based on the numerical solution of the system of conservation and transport equations for a multi-component chemically reactive turbulent system, taking into consideration nitrogen oxides formation. The Eddy-Dissipation-Concept model, which incorporates Arrhenius chemical kinetics in a turbulent flame, and the Discrete Phase Model describing the interfacial interaction are used in the investigation. The obtained results confirmed the possibility of organizing efficient combustion of distillate liquid fuel in a low-emission gas turbine combustion chamber operating on the principle of partial preliminary formation of a fuel-air mixture. Comparison of four methods of liquid fuel supply to the channels of radial-axial swirlers (centrifugal, axial, combined, and radial) revealed the advantages of the radial supply method, which are manifested in a decrease in the overall temperature field non-uniformity at the outlet and a decrease in nitrogen oxides emissions. The calculated concentrations of nitrogen oxides and carbon monoxide at the flame tube outlet for the radial method of fuel supply are 32 and 9.1 ppm, respectively. The results can be useful for further modification and improvement of the characteristics of dual-fuel gas turbine combustion chambers operating with both gaseous and liquid fuels.
Źródło:
Polish Maritime Research; 2020, 3; 89-99
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigations of the emission characteristics of a dual-fuel gas turbine combustion chamber operating simultaneously on liquid and gaseous fuels
Autorzy:
Serbin, Serhiy
Diasamidze, Badri
Gorbov, Viktor
Kowalski, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/1573591.pdf
Data publikacji:
2021
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
gas turbine engine
dual-fuel combustion
combustion chamber
liquid and gaseous fuels
Opis:
This study is dedicated to investigations of the working process in a dual-fuel low-emission combustion chamber for a floating vessel’s gas turbine. As the object of the research, a low-emission gas turbine combustion chamber with partial premixing of fuel and air inside the outer and inner radial-axial swirls was chosen. The method of the research is based on the numerical solution of the system of differential equations which represent the physical process of mass and energy conservation and transformations and species transport for a multi-component chemically reactive turbulent system, considering nitrogen oxides formation and a discrete ordinates model of radiation. The chemistry kinetics is presented by the 6-step mechanism of combustion. Seven fuel supply operating modes, varying from 100% gaseous fuel to 100% liquid fuel, have been analysed. This analysis has revealed the possibility of the application of computational fluid dynamics for problems of dual-fuel combustion chambers for the design of a floating vessel’s gas turbine. Moreover, the study has shown the possibility of working in different transitional gaseous and liquid fuel supply modes, as they satisfy modern ecological requirements. The dependencies of the averaged temperature, NO, and CO concentrations along the length of the low-emission gas turbine combustion chamber for different cases of fuel supply are presented. Depending on the different operating modes, the calculated emission of nitrogen oxides NO and carbon monoxide CO at the outlet cross-section of a flame tube are different, but, they lie in the ranges of 31‒50 and 23‒24 mg/nm3 on the peak of 100% liquid fuel supply mode. At operating modes where a gaseous fuel supply prevails, nitrogen oxide NO and carbon monoxide CO emissions lie in the ranges of 1.2‒4.0 and 0.04‒18 mg/nm3 respectively.
Źródło:
Polish Maritime Research; 2021, 2; 85-95
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigation of the efficiency of a dual-fuel gas turbine combustion chamber with a plasma‒chemical element
Autorzy:
Serbin, Serhiy
Diasamidze, Badri
Dzida, Marek
Chen, Daifen
Powiązania:
https://bibliotekanauki.pl/articles/32921246.pdf
Data publikacji:
2023
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
gas turbine engine
power plant
dual-fuel combustion
combustion chamber
liquid fuel
gaseous fuel
plasma-assisted combustion
Opis:
The study is devoted to the possibility of increasing the efficiency of the working process in dual-fuel combustion chambers of gas turbine engines for FPSO vessels. For the first time, it is proposed to use the advantages of plasma‒chemical intensification of the combustion of hydrocarbon fuels in the dual-fuel combustion chambers, which can simultaneously operate on gaseous and liquid fuels. A design scheme of a combustion chamber with a plasma‒chemical element is proposed. A continuous type mathematical model of a combustion chamber with a plasma‒chemical element has been developed, which is based on the solution of a system of differential equations describing the processes of chemical reactions in a turbulent system, taking into consideration the initiating effect of the products of plasma‒chemical reactions on the processes of flame propagation. A modified six-stage kinetic scheme of hydrocarbon oxidation was used to simultaneously predict the combustion characteristics of the gaseous and liquid fuels, taking into account the decrease in the activation energy of carbon monoxide oxidation reactions when the products of the plasma‒chemical element are added. The results reveal that the addition of plasma‒chemical products significantly reduces CO emissions in the outlet section of the flame tube (from 25‒28 ppm to 3.9‒4.6 ppm), while the emission of nitrogen oxides remains practically unchanged for the studied combustion chamber. Further research directions are proposed to enhance the working process efficiency of a dual-fuel combustion chamber for gas turbine engines as part of the power plant of FSPO vessels.
Źródło:
Polish Maritime Research; 2023, 2; 68-75
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies