Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Graphene" wg kryterium: Temat


Tytuł:
Morphology and properties of the graphene layer on the copper substrate
Autorzy:
Pietrzak, K.
Olesińska, W.
Strąk, C.
Siedlec, R.
Gładki, A.
Powiązania:
https://bibliotekanauki.pl/articles/778091.pdf
Data publikacji:
2015
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
copper
graphene
graphene oxide
reduced graphene oxide
Opis:
The aim of the work presented in the article was to clarify controversial comments about anti-corrosion and mechanical properties of graphene coatings, deposited on copper substrates. It was designed special experimental cycle comprising: preparation of graphene forms and copper, the observation of layers Cu / GO (rGO) after the thermal reduction processes and oxidative test in air at 150°C temperature and 350 h in time. The resulting coatings and graphene layers were subjected to tribological test for hardness. The observed differences in the continuity of the coverage copper surface by graphene forms, allowed to understand the macroscopic effect of increased hardness and wear resistance layers rGO/Cu.
Źródło:
Polish Journal of Chemical Technology; 2015, 17, 4; 104-108
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Preparation and properties of nanocrystalline Ni/graphene composite coatings deposited by electrochemical method
Autorzy:
Cieślak, G.
Trzaska, M.
Powiązania:
https://bibliotekanauki.pl/articles/949445.pdf
Data publikacji:
2018
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
Graphene
electrodeposition
composite coatings
Ni/graphene coatings
Opis:
The paper presents results of studies of composite nickel/graphene coatings produced by electrodeposition method on a steel substrate. The method of producing composite coatings with nanocrystalline nickel matrix and dispersion phase in the form of graphene is presented. For comparative purposes, the study also includes nano-crystalline Ni coatings produced by electrochemical reduction without built-in graphene flakes. Graphene was characterized by Raman spectroscopy, transmission and scanning electron microscopes. Results of studies on the structure and morphology of Ni and Ni/graphene layers produced in a bath containing different amounts of graphene are presented. Material of the coatings was characterized by SEM, light microscopy, X-ray diffraction. The microhardness of the coatings was examined by Knoop measurements. The adhesion of the coatings with the substrate was tested using a scratchtester. The influence of graphene on the structure and properties of composite coatings deposited from a bath with different graphene contents was determined.
Źródło:
Polish Journal of Chemical Technology; 2018, 20, 1; 29-34
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Thermoplastic elastomers containing 2D nanofillers: montmorillonite, graphene nanoplatelets and oxidized graphene platelets
Autorzy:
Paszkiewicz, S.
Pawelec, I.
Szymczyk, A.
Rosłaniec, Z.
Powiązania:
https://bibliotekanauki.pl/articles/779218.pdf
Data publikacji:
2015
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
montmorillonite
graphene oxide
graphene nanoplatelets
thermoplastic elastomers
in situ polymerization
Opis:
This paper presents a comparative study on which type of platelets nanofiller, organic or inorganic, will affect the properties of thermoplastic elastomer matrix in the stronger manner. Therefore, poly(trimethylene terephthalate-block-poly(tetramethylene oxide) copolymer (PTT-PTMO) based nanocomposites with 0.5 wt.% of clay (MMT), graphene nanoplatelets (GNP) and graphene oxide (GO) have been prepared by in situ polymerization. The structure of the nanocomposites was characterized by transmission electron microscopy (TEM) in order to present good dispersion without large aggregates. It was indicated that PTT-PTMO/GNP composite shows the highest crystallization temperature. Unlike the addition of GNP and GO, the introduction of MMT does not have great effect on the glass transition temperature of PTMO-rich soft phase. An addition of all three types of nanoplatelets in the nanocomposites caused the enhancement in tensile modulus and yield stress. Additionally, the cyclic tensile tests showed that prepared nanocomposites have values of permanent set slightly higher than neat PTT-PTMO.
Źródło:
Polish Journal of Chemical Technology; 2015, 17, 4; 74-81
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Use of carbon and aluminosilicate nanofillers in XNBR composites designed for protective materials against oils
Autorzy:
Krzemińska, S. M.
Smejda-Krzewicka, A. A.
Leniart, A.
Powiązania:
https://bibliotekanauki.pl/articles/778545.pdf
Data publikacji:
2018
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
carboxylated nitrile butadiene rubber
XNBR composites
graphene
graphene oxide
bentonite
Opis:
The objective of the work was to investigate the possibility of application of carbon and bentonite nanoparticles in carboxylated acrylonitrile-butadiene rubber (XNBR) and the related effects of the nanofi llers on the structure, as well as mechanical and barrier properties, of the resulting composites. The composites were designed for use in protective clothing and gloves. XNBR compounds were modifi ed with 2 phr of graphene fl akes, graphene oxide, or modifi ed bentonite, and crosslinked with sulfur-accelerator system. Rubber compounds were prepared using a conventional method with a laboratory rolling mill. The composites were studied in terms of structure (WAXS), surface morphology (AFM), the presence of functional groups (ATR-FTIR) barrier properties against chemical substances (mineral oil) and swelling properties, as well as mechanical properties (abrasion resistance and tensile strength). The composites were characterized by very high resistance to oil permeation (breakthrough time >480 min). The type of nanofi ller added to the XNBR blend in the amount of 2 phr did not signifi cantly affect mechanical parameters.
Źródło:
Polish Journal of Chemical Technology; 2018, 20, 2; 15-23
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Composite coatings with nickel matrix and graphene as dispersed phase
Autorzy:
Gajewska-Midziałek, A.
Powiązania:
https://bibliotekanauki.pl/articles/778669.pdf
Data publikacji:
2018
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
nickel
graphene
electrodeposition
composite coatings
Opis:
The paper presents the results of the studies of nickel-graphene composite coatings deposited by the electrochemical reduction method. A bath with low concentration of nickel ions, graphene as dispersed particles and organic compounds were used for deposition of the composite coatings nickel-graphene. The results of investigations of coatings deposited from the electrolyte containing 0.33, 0.5 and 1 g/dm3  graphene and two surface-active compounds were shown. The particles content in the coatings, the surface morphology, the cross-sectional structures of the coated samples, thickness and internal stresses were measured. Voltammetric method was used for examination of the corrosion resistance of samples of composite coatings in 0.5 M NaCl solution. The obtained results suggest that the content of incorporated graphene particles increases with an increasing amount of graphene in plating bath. The applications of organic addition agents was advantageous because it caused compressive stresses in the coatings. All of the nickel-graphene composite coatings had better corrosion resistance than the nickel coatings.
Źródło:
Polish Journal of Chemical Technology; 2018, 20, 1; 54-59
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Morphology and the physical and thermal properties of thermoplastic polyurethane reinforced with thermally reduced graphene oxide
Autorzy:
Strankowski, M.
Piszczyk, Ł.
Kosmela, P.
Korzeniewski, P.
Powiązania:
https://bibliotekanauki.pl/articles/779423.pdf
Data publikacji:
2015
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
nanocomposites
graphene
polyurethane
carbon nanofillers
TRG
Opis:
In this study, thermally reduced graphene oxide (TRG)-containing polyurethane nanocomposites were obtained by the extrusion method. The content of TRG incorporated into polyurethane elastomer systems equaled 0.5, 1.0, 2.0 and 3.0 wt%. The morphology, static and dynamic mechanical properties, and thermal stability of the modified materials were investigated. The application of TRG resulted in a visible increase in material stiffness as confirmed by the measurements of complex compression modulus (E′) and glass transition temperature (Tg). The Tg increased with increasing content of nanofiller in the thermoplastic system. The addition of thermally reduced graphene oxide had a slight effect on thermal stability of the obtained materials. The incorporation of 0.5, 1.0, 2.0 and 3.0 wt% of TRG into a system resulted in increased char residues compared to unmodified PU elastomer. Also, this study demonstrated that after exceeding a specific amount of TRG, the physicomechanical properties of modified materials start to deteriorate.
Źródło:
Polish Journal of Chemical Technology; 2015, 17, 4; 88-94
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Equilibrium and kinetics studies for the adsorption of Ni2+ and Fe3+ ions from aqueous solution by graphene oxide
Autorzy:
Konicki, W.
Aleksandrzak, M.
Mijowska, E.
Powiązania:
https://bibliotekanauki.pl/articles/778711.pdf
Data publikacji:
2017
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
nickel
iron
graphene oxide
adsorption
kinetics
Opis:
In this study, the adsorption of Ni2+  and Fe3+  metal ions from aqueous solutions onto graphene oxide (GO) have been explored. The effects of various experimental factors such as pH of the solution, initial metal ion concentration and temperature were evaluated. The kinetic, equilibrium and thermodynamic studies were also investigated. The adsorption rate data were analyzed using the pseudo-first-order kinetic model, the pseudo-second-order kinetic model and the intraparticle diffusion model. Kinetic studies indicate that the adsorption of both ions follows the pseudo-second-order kinetics. The isotherms of adsorption data were analyzed by adsorption isotherm models such as Langmuir and Freundlich. Equilibrium data fitted well with the Langmuir model. The maximum adsorption capacities of Ni2+  and Fe3+  onto GO were 35.6 and 27.3 mg g-1 , respectively. In addition, various thermodynamic parameters, such as enthalpy (ΔHO), entropy (ΔSO) and Gibbs free energy (ΔGO), were calculated.
Źródło:
Polish Journal of Chemical Technology; 2017, 19, 3; 120-129
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Oxygen Reduction Activity of Nitrogen-doped Graphene
Autorzy:
Jian-feng, Liu
Ge, Sun
Ting, Wang
Kai, Ning
Bin-xia, Yuan
Wei-guo, Pan
Powiązania:
https://bibliotekanauki.pl/articles/2174819.pdf
Data publikacji:
2022
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
Nitrogen Doping
Graphene
Oxygen Reduction Activity
Molecular Simulation
Opis:
Graphite nitrogen, pyridine nitrogen and pyrrole nitrogen are the main nitrogen types in nitrogen-doped graphene materials. In order to investigate the mechanism of the oxygen reduction activity of nitrogen-doped graphene, several models of nitrogen-doped graphene with different nitrogen contents and different nitrogen types are developed. The nitrogen content is varied from 1.3 at% to 7.8 at%, and the adsorption energy is calculated according to the established models, then the band gaps are analyzed through the optimization results, so as to compare the mag-nitude of the conductivity. Finally, the oxygen reduction activity of graphite nitrogen-doped graphene (GNG) is found to be better than pyridine nitrogen-doped graphene (PDNG) and pyrrole nitrogen-doped graphene (PLNG) when the nitrogen content is lower than 2.6 at%, and the oxygen reduction activity of PDNG is the best when the nitrogen content was higher than 2.6 at%.
Źródło:
Polish Journal of Chemical Technology; 2022, 24, 3; 29--34
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Preparation and properties of cellulose membranes with graphene oxide addition
Autorzy:
Fryczkowska, B.
Wiechniak, K.
Powiązania:
https://bibliotekanauki.pl/articles/778535.pdf
Data publikacji:
2017
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
cellulose
ionic liquid
graphene oxide
membranes
transport properties
Opis:
The paper presents results of research on the preparation of cellulose membranes with graphite oxide addition (GO/CEL). Initially, a cellulose (CEL) solution in 1-ethyl-3-methylimidazole acetate (EMIMAc) was obtained, to which graphene oxide (GO) dispersed in N,N-dimethylformamide (DMF) was added. From this solution, composite membranes were formed using phase inversion method. It was observed that the GO addition influences the physico-chemical properties of GO/CEL composite membranes, resulting in an increase in their mass per unit area, thickness and density, and a decrease in sorption properties. In addition, the study of transport properties has shown that GO/CEL membranes do not absorb BSA particles on their surface, which prevents the unfavorable phenomenon of fouling. An important feature of the obtained membranes is the specific permeate flux which reaches high values (~124 L/m2 ×h) at 3.8% of the GO addition to the cellulose matrix.
Źródło:
Polish Journal of Chemical Technology; 2017, 19, 4; 41-49
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of expanded graphite (EG) and graphene oxide (GO) on physical properties of PET based nanocomposites
Autorzy:
Paszkiewicz, S.
Nachman, M.
Szymczyk, A.
Špitalský, Z.
Mosnáček, J.
Rosłaniec, Z.
Powiązania:
https://bibliotekanauki.pl/articles/778760.pdf
Data publikacji:
2014
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
in situ polymerization
PET
graphene oxide
expanded graphite
Opis:
This work is the continuation and refinement of already published communications based on PET/EG nanocomposites prepared by in situ polymerization1, 2. In this study, nanocomposites based on poly(ethylene terephthalate) with expanded graphite were compared to those with functionalized graphite sheets (GO). The results suggest that the degree of dispersion of nanoparticles in the PET matrix has important effect on the structure and physical properties of the nanocomposites. The existence of graphene sheets nanoparticles enhances the crystallization rate of PET. It has been confirmed that in situ polymerization is the effective method for preparation nanocomposites which can avoid the agglomeration of nanoparticles in polymer matrices and improve the interfacial interaction between nanofiller and polymer matrix. The obtained results have shown also that due to the presence of functional groups on GO surface the interactions with PET matrix can be stronger than in the case of exfoliated graphene (EG) and matrix.
Źródło:
Polish Journal of Chemical Technology; 2014, 16, 4; 45-50
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Aqueous biological graphene based formulations for ink-jet printing
Autorzy:
Dybowska-Sarapuk, Ł.
Rumiński, S.
Wróblewski, G.
Słoma, M.
Młożniak, A.
Kalaszczyńska, I.
Lewandowska-Szumieł, M.
Jakubowska, M.
Powiązania:
https://bibliotekanauki.pl/articles/779057.pdf
Data publikacji:
2016
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
ink-jet printing
graphene
mesenchymal stem cells
cytotoxicity
Opis:
The aim of the study was to produce heterophasic graphene nanoplatelets based formulation designed for ink-jet printing and biomedical applications. The compositions should meet two conditions: should be cytocompatible and have the rheological properties that allow to apply it with ink-jet printing technique. In view of the above conditions, the selection of suspensions components, such as binder, solvent and surfactants was performed. In the first stage of the research the homogeneity of the dispersion of nanoplatelets and their sedimentation behaviour in diverse solutions were tested. Subsequently, the cytotoxicity of each ink on human mesenchymal stem cells was examined using the Alamar Blue Test. At the same time the rheology of the resulting suspensions was tested. As a result of these tests the best ink composition was elaborated: water, polyethylene glycol, graphene nanoplatelets and the surfactant from DuPont company.
Źródło:
Polish Journal of Chemical Technology; 2016, 18, 2; 46-52
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Graphene hydrogels with embedded metal nanoparticles as efficient catalysts in 4-nitrophenol reduction and methylene blue decolorization
Autorzy:
Żelechowska, K.
Kondratowicz, I.
Gazda, M.
Powiązania:
https://bibliotekanauki.pl/articles/779599.pdf
Data publikacji:
2016
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
graphene hydrogel
metallic nanoparticles
heterogeneous catalyst
4-nitrophenol reduction
Opis:
Synthesis and characterization of the graphene hydrogels with three different metallic nanoparticles, that is Au, Ag and Cu, respectively is presented. Synthesized in a one-pot approach graphene hydrogels with embedded metallic nanoparticles were tested as heterogeneous catalysts in a model reaction of 4-nitrophenol reduction. The highest activity was obtained for graphene hydrogel with Cu nanoparticles and additional reaction of methylene blued degradation was evaluated using this system. The obtained outstanding catalytic activity arises from the synergistic effect of graphene and metallic nanoparticles. The hydrogel form of the catalyst benefits in the easiness in separation from the reaction mixture (for example using tweezers) and reusability.
Źródło:
Polish Journal of Chemical Technology; 2016, 18, 4; 47-55
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mechanical and thermal properties of tungsten carbide – graphite nanoparticles nanocomposites
Autorzy:
Kornaus, K.
Gubernat, A.
Zientara, D.
Rutkowski, P.
Stobierski, L.
Powiązania:
https://bibliotekanauki.pl/articles/779930.pdf
Data publikacji:
2016
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
graphene
composites
thermal and mechanical properties
tungsten carbide
hot pressing
Opis:
Previous studies concerning pure tungsten carbide polycrystalline materials revealed that nanolayers of graphite located between WC grains improve its thermal properties. What is more, pressure-induced orientation of graphene nano platelets (GNP) in hot pressed silicon nitride-graphene composites results in anisotropy of thermal conductivity. Aim of this study was to investigate if addition of GNP to WC will improve its thermal properties. For this purpose, tungsten carbide with 0.5–6 wt.% of GNP(12)-additive underwent hot pressing. The microstructure observations performed by SEM microscopy. The anisotropy was determined via ultrasonic measurements. The following mechanical properties were evaluated: Vickers hardness, bending strength, fracture toughness KIc. The influence of GNP(12) addition on oxidation resistance and thermal conductivity was examined. It was possible to manufacture hot-pressed WC-graphene composites with oriented GNP(12) particles, however, the addition of graphene decreased both thermal and mechanical properties of the material.
Źródło:
Polish Journal of Chemical Technology; 2016, 18, 2; 84-88
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Graphene oxide flake activation via divinylsulfone – a procedure for efficient β-galactosidase immobilization
Autorzy:
Trusek, Anna
Powiązania:
https://bibliotekanauki.pl/articles/779087.pdf
Data publikacji:
2019
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
graphene oxide
enzyme chemical immobilization
divinylsulfone
β-galactosidase
lactose-free product
Opis:
Flaky graphene oxide was activated with divinylsulfone followed by immobilization of the β-galactosidase enzyme. An active and stable preparation was obtained. β-galactosidase stability after immobilization was much higher than with the native enzyme. The half-life time of the immobilized enzyme was estimated as 165 hours, while for the native form, the estimate was only 5 hours. The developed procedure for the preparation of flaked graphene and its use in the chemical immobilization of enzymes can be used for any enzyme. A processing solution for continuous operation was proposed and verified using cow’s milk, with lactose as the hydrolysed substrate, as a dosing stream. Lactose, a milk sugar, was effectively hydrolysed. Product for allergy sufferers who cannot digest lactose has been obtained in this way.
Źródło:
Polish Journal of Chemical Technology; 2019, 21, 1; 27-32
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reduced graphene oxide and inorganic nanoparticles composites – synthesis and characterization
Autorzy:
Onyszko, M.
Urbaś, K.
Aleksandrzak, M.
Mijowska, E.
Powiązania:
https://bibliotekanauki.pl/articles/778813.pdf
Data publikacji:
2015
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
reduced graphene oxide
platinum nanoparticles
palladium nanoparticles
zirconia nanoparticles
manganese dioxide nanoparticles
Opis:
Graphene – novel 2D material, which possesses variety of fascinating properties, can be considered as a convenient support material for the nanoparticles. In this work various methods of synthesis of reduced graphene oxide with metal or metal oxide nanoparticles will be presented. The hydrothermal approach for deposition of platinum, palladium and zirconium dioxide nanoparticles in ethylene glycol/water solution was applied. Here, platinum/reduced graphene oxide (Pt/RGO), palladium/reduced graphene oxide (Pd/RGO) and zirconium dioxide/reduced graphene oxide (ZrO2/RGO) nanocomposites were prepared. Additionally, manganese dioxide/reduced graphene oxide nanocomposite (MnO2/RGO) was synthesized in an oleic-water interface. The obtained nanocomposites were investigated by transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), Raman spectroscopy and thermogravimetric analysis (TGA). The results shows that GO can be successfully used as a template for direct synthesis of metal or metal oxide nanoparticles on its surface with a homogenous distribution.
Źródło:
Polish Journal of Chemical Technology; 2015, 17, 4; 95-103
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies