Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "exposure" wg kryterium: Temat


Tytuł:
Kryteria oceny narażenia zawodowego na niebezpieczne substancje farmaceutyczne
Autorzy:
Galwas, M.
Pośniak, M.
Powiązania:
https://bibliotekanauki.pl/articles/958183.pdf
Data publikacji:
2007
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
substancje farmaceutyczne
narażenie dermalne
narażenie inhalacyjne
narażenie zawodowe
pharmaceutical substances
dermal exposure
inhalation exposure
occupational exposure
Opis:
Pracownicy zatrudnieni w przemyśle farmaceutycznym mogą być narażeni na substancje wykazujące działanie lecznicze. Narażenie zawodowe na substancje farmaceutyczne może być jednak niebezpieczne dla zdrowia pracowników. Problem stanowi brak odpowiednich wartości progowych oraz metod oznaczania, które są niezbędne do oceny narażenia inhalacyjnego i dermalnego na substancje farmaceutyczne. W artykule przedstawiono kryteria oceny narażania na substancje farmaceutyczne. Klasyfikacja została zaproponowana na podstawie analizy danych toksykologicznych, a także klasyfikacji proponowanych przez NIOSH, IACP i IPCS. Przedstawiono również zalecenia dotyczące warunków pracy mające na celu minimalizację lub eliminację narażenia pracowników na substancje farmaceutyczne.
Workers in the pharmaceutical industry are exposed to active substances designed to produce therapeutic effects. Even so, occupational exposure to pharmaceutical substances can be associated with a risk of an adverse health effect. The main problem is the absence of adequate exposure control limits and methods of measuring assessment of dermal and inhalation hazards caused by pharmaceutical ingredients. This article provides a review of the classification criteria for exposure assessment related to an analysis of toxicological data and to existing classifications of active pharmaceuticals proposed by NIOSH, IACP and IPCS. The recommendations for minimizing or eliminating occupational exposure to pharmaceutical substances are presented.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2007, 2 (52); 5-16
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Antymon i jego związki nieorganiczne z wyjątkiem stibanu – w przeliczeniu na Sb
Antimony
Autorzy:
Jakubowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/137835.pdf
Data publikacji:
2007
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
antymon
najwyższe dopuszczalne stężenie
narażenie zawodowe
antimony
occupational exposure limits
occupational exposure
Opis:
Czysty antymon jest srebrnobiałym metalem twardym o heksagonalnej strukturze krystalicznej, który ulega łatwo sproszkowaniu. W naturze występuje w postaci siarczku (antymonit) oraz jako powszechne zanieczyszczenie w kwarcu. Do produkcji antymonu wykorzystuje się antymonit. Narażenie zawodowe na antymon i jego związki nieorganiczne może występować w trakcie różnorodnych procesów produkcyjnych, m.in. przy wydobywaniu rud antymonu, ich wytopie oraz w procesach recyklingu. Może wtedy występować narażenie łączne na metaliczny antymon, arsen i ołów. W trakcie rafinacji pracownicy są narażeni na dymy tritlenku antymonu, a podczas produkcji takich stopów zawierających antymon, jak stopy z ołowiem, mogą być narażeni na pyły zawierające antymon, antymonowodór i ołów. Gazowy antymonowodór może się wydzielać w trakcie ładowania akumulatorów ołowiowych, stwarzając w zamkniętych pomieszczeniach istotne zagrożenie. W Polsce w 2000 r. nie było przekroczeń wartości NDS antymonu, która wynosi 0,5 mg/m3. Wartości DL50 różnych związków antymonu po podaniu do przewodu pokarmowego szczurom i świnkom morskim wskazują, że antymon metaliczny jest bardziej toksyczny (wartość DL50 wynosi 100 mg/kg masy ciała) niż związki, w których antymon występuje w postaci trój- i pięciowartościowej (1000 ÷ 4000 mg/kg). Dane uzyskane w środowisku pracy wskazują, że układem krytycznym w przypadku narażenia inhalacyjnego na antymon i jego związki jest układ oddechowy. Wyniki badań pracowników zakładu przetwórstwa antymonu w Zjednoczonym Królestwie wykazały u 44 osób objawy pylicy płuc, spośród 262 badanych w badaniu radiologicznym. Metodą spektrometrii rentgenowskiej stwierdzono tendencję do kumulacji antymonu w płucach w miarę wydłużania okresu zatrudnienia. W przypadku badań eksperymentalnych za kluczowe można uznać badania Newtona i in. opublikowane w 1994 r. i niewzbudzające zastrzeżeń od strony metodycznej. Podczas tych badań szczury narażano drogą inhalacyjną na tritlenek antymonu o dużej czystości. W grupie zwierząt narażanych przez 13 tygodni na Sb2 O3 o stężeniu 23,46 mg/m3 (6 h dziennie, 5 dni w tygodniu) śródmiąższowe zwłóknienia płuc wystąpiły częściej niż w grupach zwierząt o mniejszym narażeniu i w grupie kontrolnej. W kolejnym badaniu trwającym rok, z rocznym okresem obserwacji po zakończeniu narażenia, u szczurów narażonych na związek o największym stężeniu Sb2 O3 wynoszącym 4,5 mg/m3 nie stwierdzono zwłóknień. W grupach badanych nie stwierdzono także zmian hematologicznych (stężenie hemoglobiny, liczba erytrocytów i leukocytów) i biochemicznych (aminotransferaza asparaginianowa, aminotransferaza alaninowa, fosfataza alkaliczna, azot mocznikowy we krwi, glukoza na czczo, białko całkowite, chlorki), a jedynym objawem działania było zwiększenie liczby makrofagów w pęcherzykach płuc. Przyjmując za efekt krytyczny występowanie zwłóknień w płucach, stężenie 4,5 mg/m3 Sb2O3 (3,94 mg/m3 Sb) można przyjąć za wartość NOAEL antymonu. Sugeruje się brak działania mutagennego i genotoksycznego antymonu i jego związków. Międzynarodowa Agencja ds. Badań nad Rakiem (IARC) stwierdziła w 1989 r., że nie ma wystarczających dowodów działania rakotwórczego tritlenku i trisiarczku antymonu u ludzi, natomiast istnieją wystarczające dowody działania rakotwórczego tritlenku antymonu i ograniczone dowody takiego działania dla trisiarczku antymonu u zwierząt doświadczalnych. Proponuje się przyjęcie stężenia 0,5 mg/m3 za wartość NDS antymonu i jego związków nieorganicznych. Wartość tę ustalono na podstawie wyników badań eksperymentalnych. Nie proponuje się ustalania wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) i wartości dopuszczalnego stężenia w materiale biologicznym (DSB) antymonu.
Antimony is a silvery white brittle metal, most commonly found in sulfides and sulfo salts. The predominant one is stibnite (Sb2S3). Antimony is a common constituent of metal alloys. The most important use of antimony metal is as hardener in lead storage batteries. Antimony trioxide is used in fire retardants formulations for plastics, rubbers, textiles, paper, and paints; as an additive in glass and ceramic products; and as a catalyst in the chemical industry. The intraperitoneal LD50 for rats was reported to be 100 mg/kg for the metal, 1000 mg/kg for the trisulfide, and 3250 mg/kg for the trioxide. Existing industrial toxicologic information indicates that antimony and its compounds irritate the upper respiratory tract. Several authors have remarked on pneumoconiosis-like X-ray pictures obtained from workers with long-term occupational exposure to antimony. On examination of antimony process workers significant correlation between estimated lung antimony and period of employment was found. Fisher 344 rats were exposed by inhalation to Sb203 dust of high purity at exposure levels of 0, 0.06, 0.51 and 4.5 mg/m3 for 12 months followed by a 12-month observation period. There were no Sb2O3 effects on clinical chemistry or hematology and only slight microscopic changes in the lungs. There were no neoplasms among any of the groups and they were within the historical range for controls. The concentration of 4.5 Sb2O3 mg/m3 (3.92 mg Sb/m3) was adopted as the NOAEL value. Using the total coefficient of uncertainty (equal to 8) the calculated MAC value for Sb is 0.5 mg/m3. There are no grounds for accepting STEL or BEI values for antimony.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2007, 4 (54); 117-138
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pola i promieniowanie elektromagnetyczne o częstotliwości z zakresu 0 Hz – 300 GHz
Electromagnetic fields and radiation of frequency 0 Hz - 300 GHz Rationale documentation for revision harmonizing workers permissible exposure level with the Directive 2004/40/EC
Autorzy:
Karpowicz, J.
Bortkiewicz, A.
Gryz, K.
Kubacki, R.
Wiaderkiewicz, R.
Powiązania:
https://bibliotekanauki.pl/articles/138130.pdf
Data publikacji:
2008
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
pola elektromagnetyczne
ekspozycja zawodowa
dopuszczalny poziom ekspozycj
electromagnetic fields
occupational exposure
permissible exposure level
Opis:
Obowiązujący w Polsce dopuszczalny poziom ekspozycji pracowników na pola elektromagnetyczne został poprzednio zmodyfikowany w 1999 r. (aktualnie publikowany w: DzU 2002, nr 217, poz. 1833), a terminologię oraz zharmonizowane z nim metody pomiarów i oceny ekspozycji zdefiniowano w normie PN-T-06580:2002. Jego dokumentacja została przyjęta przez Międzyresortową Komisję ds. NDS i NDN i opublikowana w artykule: Korniewicz i in. „Pola i promieniowanie elektromagnetyczne z zakresu częstotliwości 0 Hz - 300 GHz. Dokumentacja proponowanych znowelizowanych wartości dopuszczalnych ekspozycji zawodowej” (PiMOŚ 2001, nr 2(28). W związku z koniecznością transpozycji wymagań dyrektywy europejskiej 2004/40/WE do prawa polskiego, niezbędna jest harmonizacja z nimi postanowień rozporządzenia ministra pracy i polityki społecznej w sprawie NDN pól elektromagnetycznych (DzU 2002, nr 217, poz. 1833).
The permissible level of occupational exposure to electromagnetic fields (EMF) being in force in Poland was last amended in 1999 (current issue: DzU 2002; No 217, item 1833); terminology and harmonized measurement methods regarding this exposure limitations were defined by PN-T-06580:2002. Relevant rationale documentation was adopted by the Interdepartmental Commission for Maximum Admissible Concentrations and Intensities for Agents Harmful to Health in the Working Environment and published in Korniewicz i in. - Pola i promieniowanie elektromagnetyczne z zakresu częstotliwości 0 Hz - 300 GHz. Dokumentacja proponowanych znowelizowanych wartości dopuszczalnych ekspozycji zawodowej (Kor-niewicz et al. Electromagnetic fields and radiation in the frequency range of 0 Hz ÷ 300 GHz. Documen-tation of a draft amendment of maximal admissible values of occupational exposure. PiMOŚP. 2001;17(2); 97–238. In Polish.)
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2008, 4 (58); 7-45
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Praktyczna implementacja międzynarodowych zasad oceny zagrożeń zawodowych związanych z elektrodynamicznym oddziaływaniem pól magnetycznych małej częstotliwości na pracownika
Practical implementation of international rules of assessment of occupational hazards linked with electrodynamic interaction between worker’s body and magnetic field of low frequency
Autorzy:
Karpowicz, J.
Gryz, K.
Powiązania:
https://bibliotekanauki.pl/articles/137911.pdf
Data publikacji:
2013
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
pole elektromagnetyczne
narażenie zawodowe
miary narażenia
kryteria oceny
electromagnetic fields
occupational exposure
exposure measures
assessment criteria
Opis:
Pod wpływem oddziaływania poła magnetycznego małej częstotliwości w organizmie człowieka zachodzą procesy biofizyczne, które mogą prowadzić do wywołania odpowiedzi komórek nerwowych - zarówno centralnego układu nerwowego, jak i nerwów obwodowych, takich jak magnetofosfeny lub podrażnienie nerwów obwodowych. Zjawisko to determinuje strukturę wymagań dotyczących ochrony pracowników przed ostrymi skutkami oddziaływania pola magnetycznego o częstotliwości nieprzekraczającej kilkuset kiloherców. Wykorzystując wyniki modelowania numerycznego zależności miar wewnętrznych (indukowanego w organizmie pola elektrycznego) i miar zewnętrznych (indukcji magnetycznej pola od działającego na pracowników) narażenia na pole magnetyczne malej częstotliwości, opracowano zasady oceny zagrożeń związanych z oddziaływaniem elektrodynamicznym na organizm pracownika pól magnetycznych o częstotliwości z pasma 1 ÷ 10000 1-Iz. Przy opracowaniu prezentowanych zasad wykorzystano opublikowane przez International Cominission on Non-lonizing Radiation Protection (ICNIRP) zalecenia dotyczące oceny zagrożeń wynikających z oddziaływania pola magnetycznego sinusoidalnie zmiennego w czasie i jednorodnego w przestrzeni stanowiska pracy. Uwzględniono również charakterystyki warunków narażenia na pola magnetyczne, jakie występują na rzeczywistych stanowiskach pracy, gdzie pola są zarówno niejednorodne przestrzenie, jak i niesinusoidalnie zmienne w czasie, a także uwarunkowania techniczne takich badali. Zaproponowane zasady oceny narażeń definiują m.in.: miary wewnętrzne narażenia na pole magnetyczne, miary zewnętrzne w dziedzinie przestrzeni stanowiska pracy dotyczące narażenia na jednorodne lub niejednorodne pole ma genetyczne, miary zewnętrzne w dziedzinie cza su dotyczące narażenia na harmoniczne lub nieharmoniczne pole magnetyczne oraz kryteria oceny narażenia dotyczące poszczególnych części ciała — głowy, tułowia i kończyn. Prezentowane zasady oceny narażeń nie stanowią wprawdzie projektu rozwiązań formalno prawnych w tym zakresie, ale prezentując rezultaty rozważań naukowych, stanowią wkład do dyskusji merytorycznej dotyczącej potrzeby i ewentualnego zakresu zmian wymagań prawa pracy w Polsce, związanych ze zbliżającym się procesem formalnego wdrożenia wymagań nowej dyrektywy europejskiej 2013/35/UE stanowiącej minimalne wymagania w zakresie ochrony pracowników przed zagrożeniami wynikającymi z narażenia na pola elektromagnetyczne w miejscu pracy.
The influence of a low frequency magnetic field causes biophysical effects in the human body, which may trigger the response of nervous cells, in both the central and peripheral nervous systems, such as magneto-phospfenes or peripheral nervous excitation. This phenomenon determines the structure of requirements regarding the protection of workers against acute effects of the influence of a magnetic field of a frequency not exceeding a few hundreds of kilohertz. Based on the results of numerical simulations of the relation between internal measures (measures of the electric field induced in the human body) and external measures (measures of the magnetic flux density of the field affecting workers) of the exposure to a low frequency magnetic field, the rules were worked out regarding assessment of hazards linked with electrodynanic interaction between a worked body and a magnetic field of a frequency from the range 1-10000 Hz. Guide lines on the assessment of hazards caused by the influence of sinusoidal time-varying and homo geneous in the work space magnetic field, which were published by International Commission on Non-lonizing Radiation Protection (ICNIRP), have been used in developing the rules. The characteristics of exposure to the magnetic field in a real workplace, where fields are both spatial heterogeneous and non-sinusoidal time-varying, have been considered, as well technical conditions of performing such investigations. The proposal for rules on assessing exposure defines, among others, internal measures of exposure to a magnetic field, external measures applicable for exposure to a spatially homogeneous and/or heterogeneous magnetic field regarding the do- main of workplace space, external measures regarding the time domain applicable for exposure to a harmonic or non-harmonic magnetic field, and exposure assessment criteria regarding individual sections of the human body (head, trunk and limbs). However, the rules for exposure assessment this article presents are not a legislative proposal in this field, but referring the outcome of research they are contributing to a discussion on the need and possible range of modifications of requirements of labour law in Poland, related to the coming process of formal implementation of the requirements of European Directive 2013/35/EU, which established the minimum requirements regarding the protection of workers against risks caused by the exposure to electromagnetic fields in the workplace.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2013, 3 (77); 129-149
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Oksym butan-2-onu. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Butan-2-one oxime. Documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Kupczewska-Dobecka, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/23352094.pdf
Data publikacji:
2023
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
MEKO
substancja rakotwórcza
narażenie zawodowe
NDS
dopuszczalny poziom narażenia zawodowego
carcinogen
MAK
occupational exposure level
occupational exposure
Opis:
Oksym butan-2-onu (MEKO) należy do ketoksymów. Znajduje zastosowanie w formulacjach podkładów, lakierów i powłok ochronnych. Od 1 marca 2022 r. MEKO został zaklasyfikowany jako substancja rakotwórcza kategorii 1B. Wielokrotne, powtarzane lub przewlekłe narażenie drogą inhalacyjną zwierząt laboratoryjnych na MEKO prowadzi do: methemoglobinemii, niedokrwistości hemolitycznej, nienowotworowego działania na wątrobę oraz zmian zwyrodnieniowych nabłonka węchowego w nosie. W badaniach obejmujących cały okres życia obserwowano wpływ MEKO na wątrobę u szczurów i myszy w sposób zależny od stężenia. MEKO nie indukował mutacji w testach na bakteriach, in vitro na komórkach ssaków oraz in vivo. W dostępnym piśmiennictwie nie znaleziono danych na temat rakotwórczego działania MEKO u ludzi. Oksym butan-2-onu powodował nowotwory wątroby (gruczolaki i raki) u szczurów F344 i myszy CD-1. Dawkę 600 mg/kg mc./dzień przyjęto za wartość NOAEL dla toksyczności rozwojowej u szczurów. W przypadku toksyczności matczynej ustalono wartość LOAEL wynoszącą 25 mg/kg mc./dzień. Podstawą do obliczenia proponowanej wartości NDS były wyniki szacowania ryzyka raka wątroby przeprowadzone przez badaczy niemieckich. Zaproponowano przyjęcie wartości NDS na poziomie 1 mg/m³ oraz NDSCh na poziomie 3 · NDS, tj. 3 mg/m³. Ze względu na działanie rakotwórcze, drażniące i uczulające substancji oraz wchłanianie przez skórę zaproponowano następujące oznakowanie związku: „Carc. 1B”, „A”, „I”, „skóra”. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
Butan-2-one oxime (MEKO) belongs to ketoximes. It is used in the formulation of primers, varnishes and protective coatings. From March 1, 2022, MEKO has been classified as a category 1B carcinogen. Repeated or chronic inhalation exposure of laboratory animals to MEKO leads to: methaemoglobinaemia, haemolytic anemia, non-neoplastic effects on the liver and degenerative changes of the olfactory epithelium in the nose. Liver effects of MEKO were observed in rats and mice in a concentration-dependent manner in life-long studies. MEKO did not induce mutations in bacterial, in vitro mammalian cell and in vivo tests. No data on the carcinogenicity of MEKO in humans have been found in the available literature. Butan-2-one oxime caused liver tumors (adenomas and carcinomas) in F344 rats and CD-1 mice. A dose of 600 mg/kg/day was taken as the NOAEL for developmental toxicity in rats. For maternal toxicity, a LOAEL of 25 mg/kg/day was established. The base for calculating the proposed MAC value included the results of liver cancer risk estimation carried out by German researchers. It was proposed to adopt the MAC-TWA value at the level of 1 mg/m³ and MAC-STEL at the level of 3 mg/m³ . Due to the carcinogenic, irritating and sensitizing effect of the substance as well as skin absorption, the following labeling of the compound was proposed: “Carc. 1B”, “A”, “I”, “skin”. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2023, 2 (116); 105--143
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ftalan benzylu butylu
Benzyl butyl phthalate
Autorzy:
Pałaszewska-Tkacz, A.
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/138573.pdf
Data publikacji:
2010
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
BBP
NDS
narażenie zawodowe
OEL
occupational exposure
Opis:
Ftalan benzylu butylu (BBP) jest przezroczystą, oleistą cieczą o słabym zapachu stosowaną przede wszystkim jako dodatek zmiękczający do polimerów. Stosuje się ją powszechnie do produkcji płytek, pianek i wykładzin PCV. Ponadto jest wykorzystywana do produkcji uszczelniaczy (na bazie polisiarczków, poliuretanów, akrylanów), klejów i spoiw (na bazie poliakrylanów i polioctanu winylu), farb (na bazie poliuretanów i poliakrylanów) oraz atramentów i lakierów (na bazie akrylanów, nitrocelulozy i żywic winylowych). Podczas narażenia zawodowego na ftalan benzylu butylu znaczenie ma droga inhalacyjna, a w mniejszym stopniu kontakt związku ze skórą. Ze względu na niską prężność par w temperaturze pokojowej podwyższone stężenia ftalanu benzylu butylu mogą wystąpić jedynie w procesach technologicznych przebiegających w podwyższonej temperaturze lub w procesach związanych z występowaniem aerozoli ftalanu benzylu butylu w powietrzu środowiska pracy. Ftalan benzylu butylu jest związkiem o potwierdzonym szkodliwym działaniu na rozrodczość, natomiast w badaniach dotyczących jego toksyczności układowej najczęściej obserwowanymi skutkami narażenia u zwierząt był wzrost względnej i bezwzględnej masy wątroby i nerek. Skutek ten uznano za skutek krytyczny działania ftalanu benzylu butylu i zaproponowano przyjęcie stężenia 5 mg/m3 związku za jego wartość najwyższego dopuszczalnego stężenia (NDS). Zaproponowana wartość zabezpieczy pracowników również przed skutkami szkodliwego działania ftalanu benzylu butylu na rozrodczość. Z uwagi na to, że ftalan benzylu butylu nie wykazuje działania drażniącego, nie ma potrzeby ustalania wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) dla tego związku. Zaleca się oznakowanie substancji w wykazie literą „Ft” – substancja działająca toksycznie na płód.
Benzyl butyl phthalate (BBP) is a clear, oily liquid with a slight odour. It is used mostly as a plasticizer for polyvinyl chloride in vinyl floor tiles, vinyl foam and carpet backing. Furthermore, it is used in the production of sealants (polysulfide-, polyurethane-, or acrylic-based), adhesives (polyacrylic- and polyvinylacetate-based), paints (polyurethane- and polyacrylic-based), lacquers and inks (acrylic-, nitrocellulose- and vinyl resin-based). As far as occupational exposure is concerned, the inhalation route of exposure is important, and to a lesser extent dermal contact. Because of low vapour pressure at room temperature, the high concentration of BBP can only occur during technological processes where the temperature is elevated or BBP aerosols are generated. The reprotoxic activity of benzyl butyl phthalate has been confirmed, while in systemic toxicity studies increases in relative liver and kidney weights have been the most often observed effects. This effect was considered critical when the Polish OEL value of BBP was developed. It was agreed that the proposed value of 5 mg/m3 protected workers from the reproductive toxicity of BBP, too. It is also recommended to label BBP, in the Polish inventory of OELs, with the letters "Ft", a substance toxic to the foetus.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2010, 3 (65); 27-60
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Glin metaliczny
Aluminum
Autorzy:
Sapota, A.
Nasiadek, M.
Powiązania:
https://bibliotekanauki.pl/articles/138031.pdf
Data publikacji:
2006
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
glin
pyły
dymy
układ oddechowy
narażenie zawodowe
wartości normatywne
aluminum
dusts
fumes
respiratory tract
occupational exposure
exposure limits
Opis:
Glin (Al) jest srebrzystobiałym metalem o masie atomowej 26,98 i temperaturze topnienia 660,4 C. Zawartość glinu w skorupie ziemskiej wynosi około 8%. Produkcja glinu polega na elektrolizie tritlenku glinu (Al2O3) zmieszanego z topnikami. Aluminium znajduje zastosowanie do wyrobu naczyń powszechnego użytku i aparatury chemicznej. Jest wykorzystywany przy produkcji samochodów, samolotów, w metalurgii, do pokrywania zwierciadeł teleskopów, papierów dekoracyjnych i opakowań. Sproszkowany metal stosuje się w laboratoriach jako czynnik redukujący, przy produkcji materiałów wybuchowych, pigmentów, proszków błyskowych i farb oraz przy spawaniu części stalowych metodą Goldschmidta. Narażenie zawodowe w przemyśle wiąże się z produkcją glinu, technologiami spawania oraz produkcją finalnych wyrobów z glinu. Nie ma danych dotyczących toksyczności ostrej u ludzi. Natomiast przewlekłe narażenie zawodowe ludzi na pyły glinu prowadzi do wystąpienia w płucach zmian o charakterze pylicy płuc. Obserwowano także następujące zmiany: zwłóknienia w płucach, zapalenie pęcherzyków płucnych, proteinozę pęcherzyków płucnych, zapalenia oskrzeli i przewlekłe śródmiąższowe zapalenie płuc. W kilku badaniach populacji pracowników narażonych zawodowo na pyły glinu wykazano wzrost liczby przypadków występowania zmian zwłóknieniowych w płucach, zależnie od stężenia frakcji respirabilnej pyłów w powietrzu. Działanie zwłókniające pyłów glinu wykazano również w kilku eksperymentach przeprowadzonych na zwierzętach doświadczalnych. W kilku pracach podjęto próbę oceny zaburzeń ze strony układu nerwowego u pracowników narażonych na dymy i pyły glinu. Nie ma jednak wystarczających dowodów takiego działania, gdyż w żadnym z tych badań nie stwierdzono objawów ogniskowych organicznego uszkodzenia ośrodkowego i obwodowego układu nerwowego. Glin nie wykazuje działania mutagennego, genotoksycznego ani rakotwórczego. Nie działa również embriotoksycznie i teratogennie. Ze względu na fakt, że narażenie zawodowe na pyły glinu jest narażeniem złożonym, w którym występują również inne związki pylicotwórcze, wydaje się, że wyliczona wartość normatywu higienicznego powinna obejmować stężenie glinu zarówno frakcji respirabilnej pyłu jak i pyłu całkowitego. Za podstawę wyliczenia wartości NDS przyjęto badania, w których wykazano, że u badanych 53 pracowników narażonych na pyły glinu o stężeniu 1,4÷10 mg/m3 frakcji respirabilnej wykryto 1 przypadek zwłóknienia płuc i 3 przypadki z niewielkimi zmianami w płucach, wskazującymi na początki procesów zwłóknieniowych. Wzrost stężeń frakcji respirabilnej powyżej 10 mg/m3 (10÷100 mg/m3) przyczyniał się do wzrostu liczby obserwowanych przypadków zwłóknień w płucach. Stężenie 10 mg/m3 (frakcja respirabilna) przyjęto jako wartość LOAEL. Do wyliczenia wartości NDS przyjęto cztery współczynniki niepewności. Uzyskano wartość NDS na poziomie 2,5 mg/m3, którą przyjęto dla glinu zawartego w pyle całkowitym. Natomiast wartość NDS pyłu respirabilnego stanowi średnio 50% obliczonej wartości dla pyłu całkowitego, czyli około 1,2 mg/m3 (jako dymy, pył respirabilny). Ustalone wartości NDS powinny zabezpieczyć pracowników przed działaniem zwłókniającym pyłów i dymów glinu powstających w różnych procesach wytwarzania i przetwarzania aluminium, a także przed działaniem zwłókniającym innych związków pylicotwórczych towarzyszących tym procesom. Nie ma podstaw do ustalenia wartości DSB. Ze względu na fakt, że działanie drażniące dymów i pyłów występuje jedynie w warunkach narażenia długotrwałego, nie ma podstaw do ustalenia wartości NDSCh.
Aluminum (Al) is a silver-white metal with the atomic weight of 26.98 and melting temperature of 660.4 C. The earth’s crust contains about 8% aluminum. Aluminum production consists in electrolysis of aluminum oxide (Al2 O3). Aluminum is used to produce household equipment and various utensils, as well as chemical appliances, aircraft, motor vehicles, in metallurgy, to cover the surface of telescope mirrors, in decorative wrapping paper and packaging. Powdered metal is used in laboratories as a reduction factor in the manufacturing explosive materials, paints, pigments and in welding with Goldschmidt’s method. Occupational exposure occurs during aluminum production, in welding technologies, as well as in manufacturing final aluminum products.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2006, 3 (49); 77-95
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Toluen
Toluene
Autorzy:
Jakubowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/137571.pdf
Data publikacji:
2007
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
toluen
narażenie przemysłowe
NDS
toluene
occupational exposure
OEL
Opis:
Toluen ma wszechstronne zastosowanie jako surowiec w procesie produkcji gumy, żywic, detergentów, barwników, leków, trinitrotoluenu, kwasu benzoesowego i diizocyanianu toluenu. Toluen jest składnikiem wielu takich produktów rynkowych, jak: farby, szelak, inhibitory korozji, rozcieńczalniki oraz środki czyszczące i sanitarne zawierające rozpuszczalniki organiczne. Narażenie zawodowe na toluen może występować na etapie produkcji, wytwarzania, konfekcjonowania i przechowywania półproduktów i produktów zawierających toluen, jak również ich stosowania, np. w trakcie malowania farbami i lakierami czy oczyszczania powierzchni. Toluen może wchłaniać się do organizmu przez płuca, z przewodu pokarmowego i przez skórę. Retencja par toluenu w płucach u ludzi wynosi około 60 ÷ 80%. Szybkość wchłaniania toluenu przez skórę wynosi w przypadku kontaktu 0,69 mg/cm2/h. Główną drogą przemiany toluenu u ludzi jest utlenianie reszty metylowej do grupy karboksylowej z utworzeniem kwasu benzoesowego, który następnie ulega sprzęganiu z glutationem z utworzeniem kwasu hipurowego. Półokres wydalania kwasu hipurowego z moczem po narażeniu inhalacyjnym wynosi około 3,5 h. Efekty krytyczne działania toluenu obejmują działanie drażniące na oczy, wpływ na reprodukcję, działanie oto toksyczne i neurotoksyczne. Wartość NOAEL dla działania neurotoksycznego toluenu (wykonywanie testów psychometrycznych) ustalono na poziomie około 375 mg/m3. Spontaniczne poronienia występowały u kobiet narażonych zawodowo na toluen o stężeniach rzędu 170 ÷ 550 mg/m3 (średnio 300 mg/m3). Narażenie na toluen powoduje podrażnienie układu oddechowego, oczu i ból głowy. Stężenie 150 mg/m3 toluenu przyjęto za wartość NOAEL dla tego typu skutków działania, a stężenie 375 mg/m3 za wartość LOAEL. Przyjmując za skutek krytyczny działanie drażniące, zaproponowano wartość NDS toluenu równą 100 mg/m3. Pozostawiono również oznakowanie normatywu literami „Sk” (substancja wchłania się przez skórę) i literami „Ft” (substancja działa toksycznie na płód). Ze względu na działanie drażniące związku ustalono wartość NDSCh toluenu równą 200 mg/m3. Oznaczanie stężenia kwasu hipurowego w moczu zastąpiono oznaczaniem stężenia o-krezolu. Wartość DSB (dopuszczalne stężenie w materiale biologicznym) ustalono na poziomie 0,5 mg o-krezolu/g kreatyniny w próbkach moczu pobranych po zakończeniu zmiany roboczej.
Toluene is a clear, colorless liquid with a distinctive smell. The largest source of toluene release is during the production, transport and use of gasoline, which contains 5 ÷ 7% toluene by weight. Toluene is used in making paints, paint thinners, lacquers and adhesives. Absorption of toluene results mainly from inhalation of its vapor. In human studies retention of toluene in the lungs has been estimated by different authors to be 60 ÷ 80%. Significant amounts may also be absorbed through the skin if there is contact with the liquid form. The rate of absorption through the skin amounts to about 0.69 mg/cm2/h. Following absorption, toluene is rapidly distributed, with the highest levels observed in adipose tissue followed by bone marrow, adrenals, kidneys, liver, brain and blood. A mean toluene half-life of toluene in blood amount to 4.5 h and to 3.8 h in alveolar air. Approximately 20% of the absorbed toluene is excreted unchanged in the expired air. A minute amount is excreted in urine. The reminder is oxidized by transformation of the methyl radical into the carboxyl radical, which is mainly conjugated with glycine to produce hippuric acis. Less than 1% of the dose is hydroxylated to cresols. Hippuric acid is excreted in urine with a biological half-life of 3.5 h. Adverse effects on the nervous system and respiratory tract irritation are the critical effects from inhalation exposure to toluene. Experimental exposure of human volunteers to toluene at about 375 mg/m3 did not produce statistically significant differences in the results of tests measuring psychometric performance and subjective evaluations of well-being when compared to controls (NOAEL). Spontaneous abortions were observed as result of occupational exposure to toluene in concentrations of 170 ÷ 550 mg/m3. Irritation of the nose and throat was reported in printers exposed to 375 mg/m3 of toluene for 6.5 h and in volunteers exposed to the same concentration of toluene for 6 h (LOAEL). The proposed occupational exposure limits OEL-TWA of 100 mg/m3 and OEL-STEL of 200 mg/m3 are based on the LOAEL of 375 mg/m3 for irritative properties of toluene. As toluene is absorbed through the skin and is potentially fetotoxic the “Sk” and “Ft” symbols should denote this compound. A BEI value of 0.5 mg of o-cresol in urine samples collected at the end of the workshift has been proposed.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2007, 3 (53); 131-158
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dietyloamina. Dokumentacja proponowanych wartości dopuszczalnych wielkości narażenia zawodowego
Diethylamine
Autorzy:
Kupczewska-Dobecka, M.
Powiązania:
https://bibliotekanauki.pl/articles/137461.pdf
Data publikacji:
2005
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
dietyloamina
NDS
narażenie zawodowe
diethylamine
MAC
occupational exposure
Opis:
Dietyloamina (DEN) jest bezbarwną o ostrym amoniakalnym zapachu oraz słonym smaku palną cieczą, która znalazła zastosowanie w syntezie chemicznej do produkcji: żywic, pestycydów i insektycydów, a także jako: przyspieszacz w przemyśle gumowym, inhibitor korozji i inhibitor polimeryzacji. Narażenie na dietyloaminę może występować także w przemyśle farmaceutycznym, gdzie jest wykorzystywana do produkcji disulfiramu, flurazepamu, lidokainy oraz w przemyśle barwników. Dietyloaminę można zaliczyć do substancji szkodliwych w kontakcie ze skórą i po połknięciu. Najmniejsza wyznaczona wartość LD50 dla szczurów po podaniu dożołądkowym wynosi 108 mg/kg m.c., natomiast dla myszy 130 mg/kg. Inne dane wskazują, że wartości te są większe i wynoszą odpowiednio 540 mg/kg dla szczura i 500 mg/kg dla myszy. Wartość LD50 po podaniu na skórę wyznaczona dla królika wynosi 820 mg/kg . Głównym skutkiem działania dietyloaminy jest działanie żrące i drażniące. Narządami krytycznymi w przypadku narażenia zarówno na pary dietyloaminy, jak i ciekłą aminę są: oczy, skóra i układ oddechowy. W eksperymencie na ochotnikach nie udało się wyznaczyć wielkości najmniejszego stężenia dietyloaminy, które może spowodować wystąpienie objawów działania drażniącego na oczy i nos, jednak oszacowano, że objawy te pojawiają się po narażeniu na dietyloaminę o stężeniu wynoszącym 30 mg/m3. Powtarzane narażenie zwierząt na pary dietyloaminy powoduje działanie drażniące na układ oddechowy u zwierząt. W eksperymencie inhalacyjnym, 24-tygodniowym na szczurach F-344 nie obserwowano skutków działania drażniącego dietyloaminy o stężeniu 75 mg/m3. Nie wykonano jednak badań histopatologicznych błony śluzowej nosa. U szczurów narażonych na DEN o stężeniu 750 mg/m3 stwierdzono objawy podrażnienia przejawiające się występowaniem wydzieliny zapalnej z nosa, łzawieniem, zaczerwienieniem nosa, zmianami zwyrodnieniowymi w nabłonku pod postacią płaskonabłonkowej metaplazji (8/14 u samców i 13/13 u samic), rozrostu limfoidalnego (odpowiednio 7/14 i 6/13) oraz ropnego nieżytu nosa (13/14 i 13/13). Komitet Naukowy ds. Ustalania Dopuszczalnych Poziomów Narażenia Zawodowego w Unii Europejskiej (SCOEL) przyjął stężenie 75 mg/m3 za wartość LOAEL dla działania drażniącego dietyloaminy, pomimo wątpliwości spowodowanych brakiem badań histopatologicznych narażenia na związek o tym stężeniu. Eksperci SCOEL powołują się na niepublikowany raport NIOSH z 1983 r., w którym opisano skutki narażenia szczurów na dietyloaminę o stężeniu 75 mg/m3 po 30; 60 i 120 dniach narażenia. Z raportu tego wynika, że nie obserwowano skutków działania drażniącego dietyloaminy u zwierząt narażanych przez 30 i 60 dni, natomiast zmiany zwyrodnieniowe w nabłonku pod postacią płaskonabłonkowej metaplazji stwierdzono po 120 dniach narażenia. W doświadczeniach na myszach wyznaczono wartość RD50 dietyloaminy, która wynosi 550 lub 606 mg/m3. Do wyliczenia wartości najwyższego dopuszczalnego stężenia (NDS) dietyloaminy posłużyły dane zawarte w dokumentacji Unii Europejskiej. Za wartość LOAEL dla działania drażniącego przyjęto stężenie dietyloaminy wynoszące 75 mg/m3. Zastosowano łączny współczynnik niepewności równy 4, związany z wrażliwością osobniczą człowieka i stosowaniem wartości LOAEL zamiast wartości NOAEL. Jednocześnie wartość NDS wyliczono jako 1/30 wartości RD50 wyznaczonej na podstawie wyników badań na myszach. Proponuje się przyjęcie wartości NDS dietyloaminy wynoszącej 15 mg/m3, co jest zgodne z wartością dopuszczalną ustaloną w Unii Europejskiej oraz wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) wynoszącej 30 mg/m3. Zaleca się oznakowanie substancji literami „Sk” – wchłania się przez skórę, ponieważ wyznaczona wartość LD50s < 1000 mg/kg m.c. i wynosi dla królika 630 - 820 mg/kg. Nie ma podstaw do ustalenia wartości dopuszczalnego stężenia biologicznego (DSB) dietyloaminy.
Diethylamine is an alkaline, colourless, volatile liquid with a strong ammoniacal odour. The human olfactory threshold is 0.42 mg/m3. Diethylamine is used in the production of the corrosion inhibitor, and in the production of some pesticides and insect repellents, pharmaceuticals (e.g., the alcohol antagonist disulfiram ANTABUS, flurazepam, lidocaine) and rubber processig chemicals. After a single oral exposure the LD50 was 108 mg/kg body weight in the rat and 130 mg/kg bw in the mouse. After dermal exposure the LD50 was 820 mg/kg bw in rabbits. Acute DEN exposure produces severe irritation or corrosion to the eyes and skin of laboratory animals and of humans. Irritation was seen in humans exposed to 30 mg/m3. Repeated inhalation exposure to DEN vapour also produces irritation of the upper respiratory tract of rodents. The RD50 was 550 or 606 mg.m3 in the mouse. Using the NIOSH summary report of the pathology seen in this study, 75 mg/m3 was an LOAEL. Based on the LOAEL, an 8-hour TWA value of 15 mg/m3 has been recommended. In order to minimize irritation symptoms, STEL of 30 mg/m3 has been recommended.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2005, 2 (44); 51-73
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Tetrahydrofuran. Dokumentacja proponowanych wartości dopuszczalnych wielkości narażenia zawodowego
Tetrahydrofuran
Autorzy:
Skowroń, J.
Powiązania:
https://bibliotekanauki.pl/articles/137923.pdf
Data publikacji:
2004
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
tetrahydrofuran
narażenie zawodowe
działanie toksyczne
occupational exposure
toxicity
Opis:
Tetrahydrofuran (THF) jest cieczą o zapachu acetonu, otrzymywaną m.in. przez katalityczne uwodornienie bezwodnika malonowego lub furanu czy katalityczne odwodnienie 1,4-butandiolu. THF jest stosowany jako rozpuszczalnik olejów, tłuszczów, naturalnych i syntetycznych żywic oraz polimerów, głównie polichlorku winylu. Używany jest w produkcji lakierów, klejów, atramentów, farb, w syntezach paliw, witamin, hormonów, farmaceutyków, syntetycznych perfum, insektycydów i kaset magnetycznych. Jest związkiem pośrednim w syntezach chemicznych. Informacje, dotyczące toksyczności THF u ludzi, są fragmentaryczne. Zatruć ostrych u ludzi nie stwierdzono. W narażeniu inhalacyjnym THF o małych stężeniach powoduje bóle głowy oraz podrażnienia błon śluzowych nosa i gardła. Podrażnienie oczu obserwowano po narażeniu na THF o stężeniu około 15 000 mg/m3, a po narażeniu na THF o stężeniu około 75 000 mg/m3 obserwowano ogólne znieczulenie, czemu towarzyszył spadek ciśnienia krwi i przyśpieszenie oddechu. Długotrwałe narażenie na THF może powodować zapalenia skóry. THF w doświadczeniach na zwierzętach wykazuje umiarkowaną toksyczność. Wartość DL50 dla zwierząt po podaniu dożołądkowym waha się w granicach 1650 ÷ 6210 mg/kg. Wartość medialnego stężenia letalnego dla niemal wszystkich gatunków, narażanych przez 3 h lub krócej, wynosi powyżej 61 740 mg/m3 (21 000 ppm). Jednorazowe inhalacyjne, krótkotrwałe (do 3 h) narażenie szczurów na THF o stężeniu 290 ÷ 14 700 mg/m3 wywoływało zwykle niewielkie miejscowe podrażnienie skóry i błon śluzowych. THF o stężeniach 24 000 ÷ 191 000 mg/m3 powodował u szczurów ospałość, spowolnienie oddechu, sinicę, zmiany w wątrobie, nerkach oraz śledzionie i płucach. Po wielokrotnym narażeniu szczurów na THF o stężeniach 294 ÷ 590 mg/m3 stwierdzono tylko niewielkie działanie drażniące na błony śluzowe nosa i tchawicy. THF o stężeniach 1000 ÷ 2000 mg/m3 powodował spadek masy ciała szczurów, niewielkie zmiany histologiczne i zmniejszenie ciśnienia krwi. Narażenie szczurów 12 ÷ 18-tygodniowych na THF o stężeniu około 2900 mg/m3 wywoływało, oprócz działania drażniącego, także zmiany w wątrobie, uszkodzenie nabłonka tchawicy oraz wzrost aktywności acetylocholinoesterazy w mięśniach. Narażenie szczurów na THF o stężeniach 5880 ÷ 8800 mg/m3 powodowało m.in. spadek masy ciała, zaburzenia funkcji wątroby, niewielkie zmiany histologiczne, leukocytozę, zmniejszenie ciśnienia krwi oraz zmiany w płucach. THF o stężeniu 14 700 mg/m3, największym stężeniu, na który narażano szczury przez 12 ÷ 13 tygodni, powodował, oprócz obserwowanych wcześniej skutków – także ataksję, uszkodzenie funkcji wątroby i płuc. THF nie wykazywał działania mutagennego, a dane o możliwości wystąpienia aberracji chromosomowych są niekompletne i niepewne. THF może być embriotoksyczny u myszy. Dane toksykokinetyczne są bardzo skąpe. Wiadomo, że THF wchłania się szybko w drogach oddechowych. Po inhalacyjnym narażeniu szczurów stwierdzano THF w mózgu i tkance tłuszczowej. Informacje o metabolizmie THF in vitro wskazują na możliwość hydroksylacji przy udziale enzymów mikrosomalnych oraz rozszczepienia pierścienia THF. Półokres eliminacji THF u ludzi wynosił 30 min. W dostępnej literaturze nie znaleziono informacji o mechanizmie działania toksycznego THF. Autorzy proponują zmniejszenie obowiązującej w Polsce wartości NDS THF z 600 mg/m3 do 150 mg/m3, a wartości NDSCh – z 750 mg/m3 do 300 mg/m3. Podstawą do zmiany wartości NDS są wyniki badań inhalacyjnych na zwierzętach, w których obserwowano po narażeniu na THF o stężeniach około 600 mg/m3 podrażnienie błon śluzowych.
Tetrahydrofuran (THF) is a liquid smelling of acetone; it is obtained by catalytic hydrogenation of malonyl anhydride or furane and catalytic dehydratation of 1,4-butandiole. THF is used as a solvent of oils, fats, natural and synthetic resins and polymers, especially vinyl polychloride. It is used to produce varnishes, inks, paints and glues, in synthesis of fuels, vitamins, hormones, pharmaceuticals, synthetic perfumes, insecticides and magnetic cassettes. It is an intermediary compound in chemical syntheses. Data concerning THF toxicity are scarce. In inhalatory exposition THF in low concentrations causes headaches and irritation of oral and nasal mucosa. Eye irritation has been observed after exposure to THF in concentrations approximating 15 000 mg/m3. Concentration of approx. 75 000 mg/m3 causes general anesthesia, accompanied by lowering of blood pressure and tachypnea. Prolonged exposure to THF may result in dermatitis. Acute poisonings in humans have not been observed. In experiments performed on animals it shows medium toxicity. DL50 value for animals after intragastrical administration varies between 1650 and 6210 mg/kg. The value of medial lethal concentration (CL50) for almost all species exposed for 3 hours or shorter is above 61 740 mg/m3 (21 000 ppm). Single inhalatory exposure (up to 3 hours) of rats to THF at concentrations between 290 and 14 700 mg/m3 has usually resulted in slight, local irritation of the skin and mucose membranes. Increasing concentrations to 24 000 ÷ 191 000 mg/m3 caused somnolence, reduced respiratory rate, cyanosis, changes in the liver, kidneys, spleen and lungs. After repeated exposure of rats to THF at concentrations between 294 and 590 mg/m3, insignificant irritating effect on mucous membranes of trachea and nose were detected. Concentration of 1000 ÷ 2000 mg/m3 caused loss in the rats’ bodyweight, slight histological changes and lowering of blood pressure. Exposure lasting for 12 ÷ 18 weeks at concentrations approximating 2900 mg/m3, apart from an irritating effect, resulted in changes in the liver, damage of trachea epithelium and increase in the activity of acethylcholinesterase in the muscles. Exposing rats to THF at concentrations between 5880 and 8800 mg/m3 caused, among others, loss in bodyweight, impairment of the liver functions, slight histological changes and leucocytosis, lowered blood pressure, as well as changes in the lungs. The highest concentration of THF (14 700 mg/m3) to which rats were exposed for 12 ÷ 13 weeks, apart from the effects mentioned before, also caused ataxia, impairment of the liver and lungs. THF did not display a mutagenic effect, and data concerning the possibility of chromosomal aberrations are not certain and not complete. THF might be embryotoxic in mice. Toxicokinetic data are very scarce. It is known that THF is quickly absorbed in the respiratory tract. After inhalatory exposure of rats, THF was detected in the brain and fat tissue. Data concerning THF metabolism in vitro suggest the possibility of hydroxylation by means of microsomal enzymes and the possibility of splitting the THF ring. THF half-life in humans was 30 minutes. No data about the mechanism of THF toxicity were found in literature. The authors of this study suggest reducing the MAC value accepted in Poland from 600 mg/m3 to 150 mg/m3, and the MAC (STEL) value from 750 mg/m3 to 300 mg/m3. The changes are suggested on the basis of inhalatory experiments on animals, where THF caused irritation of mucous membranes at concentrations of approx. 600 mg/m3.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2004, 1 (39); 117-145
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Etylobenzen
Ethyl benzene
Autorzy:
Soćko, R.
Powiązania:
https://bibliotekanauki.pl/articles/138496.pdf
Data publikacji:
2010
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
etylobenzen
narażenie zawodowe
NDS
ethylbenzene
occupational exposure
TWA
Opis:
Etylobenzen (EB) jest węglowodorem aromatycznym występującym w postaci bezbarwnej cieczy o aromatycznym zapachu, stosowanym głównie do produkcji styrenu. Dużą ilość etylobenzenu (15 ÷ 20%) zawiera także ksylen techniczny (mieszanina izomerów). Etylobenzen występuje w ropie naftowej oraz powstaje w procesie krakingu ropy naftowej. W mieszaninie z ksylenem etylobenzen jest powszechnie stosowany jako składnik rozpuszczalników do farb i lakierów, a dzięki swoim właściwościom przeciwstukowym jest również składnikiem paliw. Stosowany jest także zamiast benzenu w rozcieńczalnikach farb drukarskich i jako rozpuszczalnik w przemyśle gumowym i chemicznym, a także jako środek owadobójczy. Główną populacją narażonych na etylobenzen są pracownicy zatrudnieni przy produkcji styrenu, oraz technicznego ksylenu lub w miejscach używania go jako rozpuszczalnika (np. w przemyśle gumowym i tworzyw sztucznych). Narażenie na etylobenzen występuje wśród użytkowników ksylenu, którzy stosują go do: odtłuszczania, usuwania farby, zabezpieczenia przed rdzą i lakierowania. W polskim przemyśle liczba narażonych osób na ten związek jest duża. W narażeniu na związek o stężeniach ponadnormatywnych pracowały w 2000 r. 353 osoby. W Polsce etylobenzen jest produkowany przez Mazowieckie Zakłady Rafineryjne i Petrochemiczne w Płocku. Etylobenzen wchłania się głównie w drogach oddechowych w postaci par i w postaci ciekłej przez nieuszkodzoną skórę. Pary etylobenzenu o większych stężeniach działają drażniąco na oczy, gardło i błony śluzowe górnych dróg oddechowych człowieka oraz działają depresyjnie na ośrodkowy układ nerwowy. Etylobenzen może u narażanych uszkadzać wątrobę i nerki, nie wykazano jednak jego działania mutagennego, a także jednoznacznie nie przypisano mu działania teratogennego na człowieka, chociaż u zwierząt doświadczalnych wykazano ewidentne jego działanie rakotwórcze. Ustalając wartość najwyższego dopuszczalnego stężenia (NDS) etylobenzenu, uwzględniono wyniki badania inhalacyjnego, którym poddano ludzi. Jednorazowe 8-godzinne narażenie na etylobenzen o stężeniu 430 mg/m3 (NOEL) nie wywołało żadnych wykrywalnych zaburzeń. Zaproponowana wartość NDS etylobenzenu wynosi 200 mg/m3, natomiast wartość najwyższego dopuszczalnego stężenia chwilowego (NDSCh) – 400 mg/m3, a ponieważ substancja wchłania się przez skórę zaproponowano także oznaczenie jej literami “Sk”. W USA (ACGIH) i w Niemczech zalecono ponadto oznaczanie w moczu stężenia kwasu migdałowego jako wskaźnika narażenia na etylobenzen. W kontrolowanych badaniach przeprowadzonych na ochotnikach narażonych na etylobenzen stwierdzono korelację między stężeniem etylobenzenu w środowisku pracy, wyrażonym w miligramach na metr sześcienny, a stężeniem kwasu migdałowego w moczu, wyrażonym w miligramach na gram kreatyniny. Zaproponowano przyjęcie stężenia 40 mg kwasu migdałowego/g kreatyniny za wartość dopuszczalnego stężenia w materiale biologicznym (DSB) etylobenzenu, a także określono szybkość wydalania związku w próbce moczu pobranej 2 h pod koniec zmiany roboczej wynoszącą 20 mg/h.
Ethyl benzene is a colorless, flammable liquid with an aromatic odor. Ethyl benzene is used as a solvent, as an intermediate in the production of styrene, and in the plastics and rubber industries. Industrial grade xylene contains approximately 20% ethyl benzene. Ethyl benzene is an irritant of the skin and mucous membranes and appears systemically to have acute and possibly chronic effects on the central nervous system. Other chronic health hazards, as evidenced in animal experimentation, would be damage to the liver, kidneys, and testes. The Expert Group for Chemical Agents recommended, on the basis of the results of a human inhalation study, a TLV value for ethyl benzene 200 mg/m3 and the value of 400 mg/m3 as the Short-Term Exposure Limit (STEL). The proposed values of hygiene standards should protect workers against the effects of ethyl benzene mainly on the central nervous system as well as potential liver and kidneys damage. The values should minimize the potential for eye and skin irritation. Ethyl benzene should be denoted with “Skin” notation.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2010, 2 (64); 109-130
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Przegląd miar skutków narażenia na zmienne w czasie pole elektromagnetyczne i właściwości metrologicznych mierników, istotnych podczas oceny narażenia w środowisku pracy
A review of the effects of exposure to a time-varying electromagnetic field and the metrological properties of measurement devices that have a significant influence when evaluating exposure in the work environment
Autorzy:
Bieńkowski, P.
Karpowicz, J.
Kieliszek, J.
Powiązania:
https://bibliotekanauki.pl/articles/137758.pdf
Data publikacji:
2016
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
zagrożenia elektromagnetyczne
narażenie pracowników
ocena ekspozycji
pole elektryczne
pole magnetyczne
electromagnetic hazards
workers’ exposure
exposure evaluation
electric field
magnetic field
Opis:
Eksploatacja wszystkich urządzeń i instalacji zasilanych prądem elektrycznym jest nierozerwalnie związana z zamierzoną lub niezamierzoną emisją energii elektromagnetycznej. W wyniku tej emisji pole elektromagnetyczne powszechnie występuje w środowisku. Bezpośrednim skutkiem oddziaływania pola z obiektami elektroprzewodzącymi (w tym z ciałem człowieka) jest indukowanie pola elektrycznego i prądu elektrycznego w eksponowanych obiektach (pojedynczych obiektach w tzw. wolnej przestrzeni lub w grupach obiektów połączonych galwanicznie). W organizmie człowieka mogą one wywołać elektrostymulację tkanek pobudliwych lub wzrost temperatury, co prowadzi do zaburzeń funkcjonowania organizmu lub utrudnia bezpieczne realizowanie obowiązków zawodowych. Przy identyfikacji, badaniach i ocenie parametrów narażeń na pola elektromagnetyczne są stosowane zarówno techniki pomiarowe, symulacje komputerowe, jak i analiza parametrów technicznych obiektów technicznych emitujących pola elektromagnetyczne. Zwykle największą miarodajność w przypadku oceny zagrożeń zawodowych mają badania in situ, ponieważ umożliwiają ocenę zarówno rzeczywistych parametrów pola elektromagnetycznego w specyficznych warunkach przestrzeni pracy, gdzie eksploatowane mogą być jednocześnie różnorodne urządzenia i instalacje elektryczne oraz rozmieszczone są zróżnicowane obiekty materialne modyfikujące morfologię ekspozycji (m.in. rozkład przestrzenny i zmienność w czasie), jak i ocenę warunków narażenia przy aktualnym stanie technicznym źródeł pola, który zmienia się wskutek zmiennych warunków ich eksploatacji i konserwacji oraz procesów starzeniowych urządzeń. W artykule omówiono: charakterystyki bezpośredniego i pośredniego oddziaływania pola elektromagnetycznego na organizm człowieka, miary skutków narażenia na zmienne w czasie pole elektromagnetyczne (o częstotliwości z pasma od 5 Hz do 300 GHz), parametry charakteryzujące pole elektromagnetyczne w środowisku (stosowane zgodnie z wymaganiami prawa pracy podczas oceny narażenia pracowników), zasady pomiaru pola elektrycznego i magnetycznego oraz właściwości metrologiczne mierników (istotne z punktu widzenia jakości pomiarów wykorzystywanych w dziedzinie bezpieczeństwa i higieny pracy). Ponadto scharakteryzowano czynniki determinujące niepewność pomiarów pola elektromagnetycznego w środowisku pracy, ze szczególnym uzasadnieniem wymagań określających parametry metrologiczne aparatury wykorzystywanej do pomiarów podjętych ze względu na ocenę zgodności warunków narażenia z ustalonymi limitami dotyczącymi natężenia pola elektrycznego i magnetycznego w miejscu pracy.
Any use of electric devices and installations is inextricably linked to the intentional or unintentional emission of electromagnetic energy. Consequently, the electromagnetic field is commonly present in the environment. The direct effects of the electromagnetic influence on electrically conductive objects (including the human body) consists in the electric field and current induction in exposed objects (single objects in the ‘free space, or in groups of objects with galvanic contact). In the human body, they may cause electrostimulation in electro sensitive tissues or an increase in temperature that may lead to malfunctions within the body or difficulties in the safe performance of professional duties. When identifying, investigating and evaluating the parameters of the electromagnetic field, various techniques can be applied: measurements, computer simulations or the analysis of parameters of technical objects emitting an electromagnetic field. The highest quality evaluation of occupational hazards usually comes from in-situ investigations. This is because they allow the evaluation of the real parameters of electromagnetic fields in the particular conditions of the workplace where various electric devices and installations may be used at the same time, and where various physical objects are present that might influence the exposure morphology (e.g. spatial distribution and time variability). They also permit an evaluation of the exposure conditions taking into account the actual technical stage of the field sources, which vary due to changes in the use and maintenance conditions, or due to aging devices. The article presents: the characteristics of direct and indirect interaction between the electromagnetic field and the human body, the measures of exposure to a time-varying electromagnetic field (5 Hz – 300 GHz frequency band), the parameters characterizing the electromagnetic field in the environment (used according to the labour law in evaluations of workers’ exposure), the principles of electric and magnetic field measurements and the metrological properties of measurement devices (significant from the point of view of the quality of measurements used in the area of occupational health and safety). Factors determining the uncertainty of electromagnetic field measurements are also characterized, focusing on the rationale for guidelines on the metrological parameters of devices used in measurements intended to evaluate whether exposure conditions comply with the established limits of electric and magnetic field strength at the workplace.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2016, 4 (90); 41-74
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fluorki – w przeliczeniu na F
Fluorides
Autorzy:
Jakubowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/138363.pdf
Data publikacji:
2008
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
fluorki
normatywy higieniczne
fluoroza
fluorides
occupational exposure limits
fluorosis
Opis:
Fluorki metali są to sole kwasu fluorowodorowego. Do ważniejszych fluorków należą: fluorek sodu (NaF), fluorek wapnia (CaF2), fluorek potasu (KF) i kryolit (3NaF. AlF3). Narażenie zawodowe na fluorki ma miejsce w kopalniach i zakładach przerabiających: fluoryt, kryolit i apatyt. Fluorki są obecne oraz emitowane w procesach produkcji: stali, żelaza, glinu, szkła ceramiki i emalii. Są także składnikami otulin elektrod spawalniczych. Wchłanianie fluorków z płuc i z przewodu pokarmowego zwiększa się ze wzrostem ich rozpuszczalności w wodzie. Stwierdzono, że wydajność wchłaniania związków dobrze rozpuszczalnych w wodzie wynosi 90 ÷ 96%. Związki słabo rozpuszczalne w wodzie są wchłaniane wolniej i z mniejszą wydajnością, np. tylko 62% fluorku wapnia uległo wchłonięciu po podaniu drogą pokarmową. Fluorki wykazują działanie drażniące. Skutek ten stwierdzano, gdy stężenia fluorków przekraczały 10 mg/m3, natomiast objawy działania drażniącego nie występowały, gdy stężenia związku były mniejsze niż 2,5 mg/m3. W organizmie fluorki kumulują się głównie w kościach, przy czym ilości deponowane w tkance kostnej dzieci są większe (około 50%) niż u osób dorosłych (około 10%). Deponowanie fluoru w kościach zachodzi głównie w miejscach kostnienia i wapnienia. Główną drogę wydalania stanowią nerki. Około 50% podanej dawki wydala się w moczu, 6 ÷ 10% z kałem i 13 ÷ 23% z potem. Pozostała ilość ulega kumulacji w tkance kostnej. Proces wydalania fluorków ma charakter wielofazowy. Zwiększone wchłanianie fluorków w dłuższym okresie może prowadzić do fluorozy układu kostnego, tj. do patologicznego formowania kości. Fluoroza układu kostnego była opisywana głównie u osób zatrudnionych: przy produkcji aluminium, w odlewniach magnezu, przy przerobie fluorytów i produkcji superfosfatu. Początki osteofluorozy są czasem bezobjawowe i mogą być stwierdzane radiologicznie jako wzrost gęstości różnych kości, szczególnie kręgosłupa i miednicy. Przeprowadzono badania 74 robotników zatrudnionych w zakładzie produkującym fosforanowe nawozy sztuczne. Fluorki były obecne w powietrzu w postaci pyłów i gazów. Wyniki odnoszono do grupy kontrolnej. Nie stwierdzono zmian gęstości kości w grupie pracowników narażanych na związek o stężeniu średnio 2,65 mg/m3 (0,5 ÷ 8,3 mg/m3 w przeliczeniu na fluor), podczas gdy zmiany takie wystąpiły u 17 robotników narażanych na związek o średnim stężeniu 3,38 mg/m3 (1,78 ÷ 7,73 mg/m3). Wyniki badań środowiskowych wskazują, że zmiany struktury kości stanowiące główny skutek przewlekłego narażenia na fluorki nie występowały, gdy stężenia fluorków w 24-godzinowych zbiórkach moczu były mniejsze niż 5 mg/l. W dwóch badaniach przeprowadzonych w warunkach przemysłowych nie stwierdzono zmian w budowie kości, jeżeli stężenia fluorków w próbkach moczu pobranych przed rozpoczęciem zmiany nie przekraczały 3,4 mg/l oraz gdy stężenia w próbkach moczu pobranych przed zakończeniem zmiany nie były większe niż 13 mg/l. Fluoroza szkieletowa występowała także w Indiach i w Chinach w wyniku spożywania wody o wysokiej zawartości fluorków (powyżej 10 mg/l). Uważa się, że codzienne pobieranie drogą pokarmową 8 mg fluorków może być szkodliwe dla osób dorosłych. Na podstawie wyników badań eksperymentalnych na zwierzętach potwierdzono otrzymane wcześniej wyniki badań, którym poddano ludzi, wskazujące, że układ kostny jest układem docelowym w przypadku narażenia zawodowego i środowiskowego na fluorki. Działanie genotoksyczne fluorków stwierdzano, wówczas gdy podawane dawki były bardzo toksyczne dla komórek i organizmów. Mniejsze dawki nie powodowały skutków działania genotoksycznego. W IARC zaliczono fluorki do grupy 3., czyli do związków nieklasyfikowanych jako czynniki rakotwórcze dla człowieka ze względu na brak dowodów działania u ludzi oraz brak lub niewystarczające dowody ich działania na zwierzęta. W ACGIH zaliczono fluorki do grupy A4, czyli do substancji nieklasyfikowanych jako czynniki rakotwórcze dla człowieka. Zakresy wartości normatywów higienicznych (TWA) fluorków wynoszą w różnych państwach od: 0,6 mg/m3 w Norwegii, 1 mg/m3 na Węgrzech, 1,5 mg/m3 w Szwajcarii i 2 mg/m3 w Szwecji oraz do 2,5 mg/m3 w większości państw. Wydaje się celowa zmiana dotychczasowej wartości najwyższego dopuszczalnego stężenia (NDS) z 1 mg/m3 na 2 mg/m3 z zastosowaniem przeliczania na F-, a nie na HF. Wartość ta powinna zabezpieczać ludzi także przed działaniem drażniącym związku. Nie ma podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) fluorków. Na podstawie danych zamieszczonych w dokumentacji można przyjąć stężenie 3 mg/g kreatyniny w próbkach moczu pobranych przed rozpoczęciem zmiany oraz 9 mg/g kreatyniny w próbkach moczu pobranych pod koniec zmiany za wartości dopuszczalnego stężenia w materiale biologicznym (DSB) fluorków. Przestrzeganie powyższych zaleceń powinno zapobiegać występowaniu u osób narażonych fluorozy kości.
Fluorides are defined as binary compounds or salts of fluorine and another element. The chief fluoride minerals are fluorspar ( CaF2) and cryolite ( Na3AlF6). The fluorides of alkali metals such as sodium fluoride are soluble in water. Those of alkaline earth such as calcium fluoride, are insoluble or sparingly soluble in water. Inorganic fluorides find a variety of commercial uses. Soluble fluoride compounds are readily absorbed from the lungs and gastrointestinal tract. Studies in humans and animals have found that 90 ÷ 96 % of an oral dose of soluble fluoride compounds is absorbed. Poorly soluble fluoride compounds, such as calcium fluoride do not appear to be well absorbed. Fumes, containing fluoride in concentrations above 10 mg/m3 were irritating. No effects were noted at levels below 2.5 mg/m3. The largest concentration of fluoride in the body is found in calcified tissues. Fluoride deposition in bone occurs mainly in regions undergoing active ossification and calcification. The amount of fluoride taken up by bone is inversely related to age. The primary pathway for fluoride excretion is via the kidneys and urine (about 50%). To a lesser extent fluoride is also excreted in the feces, sweet, and saliva. Fluoride elimination after intermittent exposure is triphasic. Marked evidence of skeletal fluorosis was reported in workers exposed to gaseous fluoride and fluoride dust in the pot rooms of the aluminium industry, in magnesium foundry, in the process of crushing and refining of creolite. No changes in bone density were found in a group of workers exposed in concentrations of fluoride averaging 2.65 mg/m3, while such changes were detected in workers with exposures averaging 3.38 mg/m3. No bone structure changes were observed if fluoride concentrations in 24-hour urine specimens were lower than 5 mg/l. Pharmacokinetic studies indicate that such no-effect level in 24-hour urine specimens is most likely to be achieved if the fluoride concentration in end-of-shift specimens is 9 mg/l and in preshift specimens is 2 mg/l. In general positive genotoxicity findings occurred at doses that are highly toxic to cells and whole animals. Carcinogenic classification – IARC, group 3 – not classifiable as to carcinogenicity to humans; ACGIH – A4 – not classifiable as human carcinogen. Occupational exposure limits ( TWA) amount in different countries from 0.6 mg/m3 to 2.5 mg/m3. The Expert Group recommended a OEL-TWA 2 mg/m3 and biological exposure index (BEI) of 9 mg/g creatinine for the end-of-shift samples of urine and 3 mg/g creatinine for preshift samples of urine.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2008, 3 (57); 25-50
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metotreksat – frakcja wdychalna : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Methotrexate – inhalable fraction : documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Kupczewska-Dobecka, M.
Powiązania:
https://bibliotekanauki.pl/articles/138430.pdf
Data publikacji:
2015
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
metotreksat
cytostatyki
narażenie zawodowe
methotrexate
antineoplastics drugs
occupational exposure
Opis:
Metotreksat (MTX) jest strukturalnym analogiem kwasu foliowego. Związek jest w temperaturze pokojowej ciałem stałym występującym w formie jasnożółtopomarańczowego krystalicznego proszku o lekkim zapachu, charakterystycznym dla związków aromatycznych. Metotreksat jest stosowany jako lek cytostatyczny podawany w infuzjach lub doustnie, należący do antagonistów kwasu foliowego. O zawodowym narażeniu na cytostatyki można mówić na dwóch etapach ich zastosowania, tj. podczas procesów wytwarzania chemioterapetyków oraz podczas ich stosowania w codziennej praktyce leczniczej oddziałów szpitalnych, przede wszystkim tych, na których leczeni są pacjenci chorujący na choroby nowotworowe. W Polsce metotreksat nie jest produkowany i obecnie brak jest danych o liczbie osób narażonych na jego działanie w placówkach służby zdrowia, ponieważ nie zostały ustalone wartości najwyższych dopuszczalnych stężeń tej substancji w środowisku pracy. W NIOSH w 2004 r. oszacowano, że liczba osób narażonych zawodowo w USA na cytostatyki i inne leki niebezpieczne przekracza 5 mln. Główne skutki działania metotreksatu po podaniu: dożołądkowym, domięśniowym lub dożylnym, obejmują: zahamowanie czynności szpiku kostnego, działanie hepatotoksyczne oraz zaburzenia płodności. W warunkach narażenia inhalacyjnego metotreksat może podrażniać oczy i błony śluzowe nosa. Substancja została zaklasyfikowana jako drażniąca na skórę i oczy kategorii 2. Kontakt ze skórą uznano za najważniejszy czynnik ryzyka dla personelu medycznego narażonego na cytostatyki. Najczęściej zgłaszane objawy skórne dotyczyły kontaktu z rozlanym roztworem zawierającym metotreksat lub wysypanym z opakowania produktem, w czasie jego usuwania oraz kontaktu z ekskrementami pacjentów poddawanych chemioterapii. U pracowników, zatrudnionych w zakładzie produkującym metotreksat, związek powodował uszkodzenia genetyczne kwasu dezoksyrybonukleinowego (DNA) w testach: mikrojądrowym, kometowym i mutacji genowych hprt. Uszkodzenia chromosomów stwierdzono w szpiku kostnym pacjentów leczonych metotreksatem. Genotoksyczność wywoływaną przez metotreksat potwierdzono na podstawie wyników badań na zwierzętach. Na podstawie dostępnych danych w Międzynarodowej Agencji ds. Badań nad Rakiem (IARC) stwierdzono, że brak jest dowodów na działanie rakotwórcze metotreksatu u ludzi i zwierząt (grupa 3.). W grupie chorych leczonych metotreksatem nie uzyskano jednoznacznych dowodów potwierdzających zwiększone ryzyko nowotworów. Metotreksat nie wykazywał działania rakotwórczego w przewlekłych badaniach na zwierzętach po podaniu: dożołądkowym, dootrzewnowym oraz dożylnym. Metotreksat wpływa na rozrodczość u ludzi zarówno w okresie leczenia, jak i przez krótki czas po jego zakończeniu. Obecnie rekomenduje się zharmonizowaną klasyfikację metotreksatu pod kątem szkodliwego działania na rozrodczość i ze względu na funkcje rozrodcze oraz płodność do kategorii 2., tj. substancji, co do których podejrzewa się, że działają szkodliwie na rozrodczość ludzi i ze względu na rozwój potomstwa do kategorii 1.A, tj. substancji działających szkodliwie na rozrodczość ludzi. Podstawą ustalenia wartości NDS dla metotreksatu były następujące dane: 1. Metotreksat wykazuje bezprogowe działanie genotoksyczne, które może wystąpić na każdym poziomie narażenia. Na podstawie danych u ludzi ustalenie zależności dawka-odpowiedź nie jest możliwe, jak również nie jest to możliwe przez ekstrapolację wyników z badań na zwierzętach. 2. Producenci metotreksatu ustalili dopuszczalne poziomy narażenia zawodowego na poziomie 0,0003 ÷ 0,0025 mg/m3. 3. Na podstawie przedstawionych klasyfikacji (IPCS, NIOSH, ASHP, IACP) metotreksat powinien mieć wartość dopuszczalnego narażenia zawodowego na poziomie < 0,01 mg/m3. Wartość tę przyjęto za podstawę do ustalenia wartości najwyższego dopuszczalnego stężenia (NDS) i zastosowano arbitralnie współczynnik niepewności równy 10, uwzględniając skutki odległe, wynikające z działania metotreksatu, tj. działanie genotoksyczne i szkodliwe działanie na rozrodczość u ludzi, zarówno na płodność, jak i rozwój potomstwa. Zaproponowano przyjęcie wartości NDS dla frakcji wdychalnej metotreksatu na poziomie 0,001 mg/m3. Ustalenie wartości dopuszczalnej w środowisku pracy dla metotreksatu nałoży na pracodawców obowiązek monitorowania stężenia tego cytostatyku w środowisku pracy i pozwoli na ocenę rzeczywistego narażenia personelu medycznego na tę substancję. Nie ma podstaw merytorycznych do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) i wartości dopuszczalnego stężenia w materiale biologicznym (DSB) metotreksatu. Należy zastosować także oznakowanie „skóra”, ponieważ wchłanianie substancji przez skórę może być podobnie istotne, jak przy narażeniu drogą oddechową, a także oznakowanie literami „Ft” – substancja działająca szkodliwie na płód.
Methotrexate (MTX) is a structural analogue of folic acid. This compound is solid at room temperature; it is a yellowish-orange, crystalline powder with a slight odor characteristic of aromatic compounds. Methotrexate is a cytostatic drug administered in infusion or orally; it is a folic acid antagonist. Occupational exposure to cytotoxic drugs takes place at two stages of their application, i.e., during manufacturing processes and during their use in daily practice of medical wards, especially those which treat cancer patients. In Poland, methotrexate is not produced, and there are currently no data on the number of people exposed to its action in health care, because the value of the maximum concentration of the substance in the workplace has not been set. NIOSH in 2004 estimated that the number of persons occupationally exposed to cytotoxic drugs and other dangerous drugs in the USA exceeded 5 million. The main effects of methotrexate after intragastric, intramuscular or intravenous administration include myelosuppression, hepatotoxicity and impaired fertility. In terms of exposure by inhalation, methotrexate can irritate the eyes and mucous membranes of the nose. This substance is classified as irritating to the skin and eyes, category 2. Contact with the skin was found to be the most important risk factor for medical personnel exposed to cytotoxic drugs. The most frequently reported skin symptoms were associated with removal of methotrexate powder or solutions and in contact with the excrement of patients undergoing chemotherapy. Methotrexate induced genetic damage of deoxyribonucleic acid (DNA) in micronucleus, comet and hprt gene mutation tests among workers employed in a plant manufacturing methotrexate. Chromosomal damage was found in the bone marrow of patients treated with methotrexate. Animal studies confirmed methotrexate-induced genotoxicity. On the basis of available data, the International Agency Research on Cancer (IARC) concluded that there was no evidence of a carcinogenic effect of methotrexate in humans and animals (group 3). In a group of patients treated with methotrexate, there was no conclusive evidence of an increased risk of cancer. Methotrexate was not carcinogenic in chronic animal studies after intragastric, intraperitoneal or intravenous administration. Methotrexate affects fertility in humans, both during treatment and for a short time afterwards. With respect to the sexual function and fertility, category 2 is the present recommended methotrexate harmonized classification for reproductive toxicity; however, with respect to the development of the offspring, it is category 1A. The MAC-TWA value for methotrexate was set on the basis of the following: 1. Methotrexate is genotoxic without a threshold, which may occur at any level of exposure. Based on the data in humans, it is not possible to determine the dose-response; this is not possible by extrapolation of results from animal studies, either. It is not possible to propose the MAC value on the basis of the smallest oral therapy dose because in 10% to 37% of patients methotrexate results in adverse effects after low therapeutic doses. Myelosuppression and toxic effects on mucous membranes depend on the dose of methotrexate and the time of exposure; the critical dose is > 2 - 10- 8 mol/L plasma. 2. Manufacturers of methotrexate established occupational exposure levels at 0.0003 – 0.0025 mg/m3. In 1988, OSHA arbitrarily established a target concentration level of 0.04 mg/m3 (40 μg/m3) for the purposes of air monitoring. 3. On the basis of the classification (IPCS, NIOSH, ASHP, IACP), methotrexate should have a permissible occupational exposure value of < 0.01 mg/m3. This value was taken as a basis for determining the maximum admissible concentration (MAC ); the arbitrary uncertainty factor of 10 was used, taking into account long-term consequences, resulting from the action of methotrexate, i.e., genotoxicity and reproductive toxicity in humans: the effect on both the fertility and development of the offspring in humans. It is proposed to determine the MAC values for the inhalable fraction of methotrexate at the level of 0.001 mg/m3. Determination of the limit value in the working environment for methotrexate imposes on employers an obligation to monitor the concentration of this chemotherapeutic agent in the working environment. It will also make it possible to assess actual exposure of medical personnel to this substance. The authors found basis for determining short-term ( STEL ) and permissible concentrations in biological material (DSB) of methotrexate. It is also proposed to use the "skin" label in the list of occupational exposure limit because absorption through the skin may be as important as inhalation. Using the letters " Ft " – toxic to the fetus – is also proposed.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2015, 1 (83); 73-118
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Heksafluoropropen : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Hexafluoropropene : documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Świdwińska-Gajewska, A
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/138517.pdf
Data publikacji:
2017
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
heksafluoropropen
toksyczność
narażenie zawodowe
NDS
hexafluoropropene
toxicity
occupational exposure
Opis:
Heksafluoropropen (HFP) jest bezbarwnym gazem stosowanym głównie jako monomer do produkcji fluorowych polimerów termoplastycznych, a także środka gaśniczego – heptafluoropropanu. Został zaklasyfikowany pod względem zagrożeń dla zdrowia jako substancja: działająca szkodliwe w następstwie wdychania, powodująca podrażnienie dróg oddechowych, mogąca spowodować uszkodzenie nerek w następstwie jednorazowego narażenia inhalacyjnego, a także przez długotrwałe lub powtarzane narażenie inhalacyjne. Heksafluoropropen nie ma w Polsce ustalonych normatywów higienicznych w środowisku pracy. Powodem, dla którego opracowano dokumentację i zaproponowano wartość najwyższego dopuszczalnego stężenia (NDS), jest informacja o produkcji heksafluoropropenu w Polsce. Substancja ta została zgłoszona (jako półprodukt) do Europejskiej Agencji ds. Chemikaliów przez rejestrującego (w rozumieniu rozporządzenia REACH) z siedzibą w Tarnowie. Nie ma wyników badań dotyczących działania toksycznego heksafluoropropenu na ludzi. U zwierząt narażanych inhalacyjnie na heksafluoropropen obserwowano przede wszystkim zmiany w nerkach: zwyrodnienie i martwicę nabłonka kanalików krętych. Przy większym stężeniu heksafluoropropenu u zwierząt obserwowano: obrzęk płuc, a także zaburzenie koordynacji i skurcze kloniczne, a ponadto zmiany względnej masy i aktywności kory nadnerczy, zmniejszenie względnej masy śledziony oraz zmiany w wątrobie. Na podstawie wyników badań biochemicznych wykazano zwiększenie ilości jonów fluorkowych i aktywności dehydrogenazy mleczanowej w moczu, a także zwiększenie stężenia kreatyniny oraz azotu mocznikowego w surowicy narażanych zwierząt. Zmiany parametrów krwi obejmowały także zmiany liczby: limfocytów, neutrofilów oraz eozynofilów. W badaniach dotyczących odległych skutków działania toksycznego, heksafluoropropen nie działał mutagennie w układach bakteryjnych ani na komórki ssaków. W testach w warunkach in vitro związek wywoływał aberracje chromosomowe w komórkach jajnika chomika chińskiego. W badaniach przeprowadzonych w warunkach in vivo na myszach zaobserwowano powstawanie mikrojąder w szpiku kostnym. Wynik ujemny uzyskano w teście na nieplanową syntezę DNA w hepatocytach szczurów oraz w teście dominujących mutacji letalnych u szczurów. Nie zaobserwowano wpływu heksafluoropropenu na rozrodczość. W dostępnym piśmiennictwie nie ma danych dotyczących działania rakotwórczego związku. Mechanizm działania toksycznego heksafluoropropenu jest związany z metabolizmem na drodze S-koniugacji z glutationem, a w szczególności z hydrolizą koniugatu. Przy udziale enzymu b-liazy dochodzi do rozkładu koniugatu i powstawania aktywnych tioli. Nefrotoksyczne działanie heksafluoropropenu jest związane z dużą aktywnością enzymów (b-liazy i N-deacetylazy), które przyczyniają się do powstawania aktywnych tioli w kanalikach nerkowych. Za podstawę do oszacowania wartości najwyższego dopuszczalnego stężenia (NDS) heksafluoropropenu w środowisku pracy przyjęto wyniki badania, w którym myszy i szczury narażano inhalacyjnie na związek przez trzy miesiące. Narządem krytycznym toksycznego działania heksafluoropropenu u gryzoni były nerki. Na podstawie wartość NOAEC wynoszącej 62 mg/m3 zaproponowano przyjęcie w Polsce wartości NDS dla heksafluoropropenu na poziomie 8 mg/m3. Nie ma podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) oraz wartości dopuszczalnej w materiale biologicznym (DSB).
Hexafluoropropene (HFP) is a colorless gas. It is used mainly as a monomer for the production of thermoplastic fluoropolymers and as an extinguishing agent - heptafluoropropane. It has been classified for health hazards as a substance that is harmful if inhaled, may cause respiratory irritation and renal damage after a single exposure and through prolonged or repeated inhalation exposure. Hexafluoropropene does not have Maximum Admissible Concentration (MAC) value in Poland. The reason for developing the documentation of proposal for MAC value was the production of hexafluoropropene in Poland. This substance was registered as an intermediate product in the European Chemicals Agency by the registrant (within the meaning of the REACH Regulation) sited in Tarnów. There is lack of information on the toxic effects of occupational exposure to hexafluoropropene in humans. Degeneration and epithelial necrosis of the tubular lobules were observed in kidneys of laboratory animal after inhalation of hexafluoropropane. In the rodents exposed at higher concentrations of hexafluoropropene, pulmonary edema, coordination disorders and clonic contractions occurred. Exposure to hexafluoropropene induced changes in relative weight and activity of adrenal cortex, decrease in relative weight of spleen and changes in liver. Biochemical studies showed an increase of the level of fluoride ions and urinary lactate dehydrogenase activity and elevated serum creatinine and urea nitrogen in the exposed animals. Changes in blood parameters (count of lymphocytes, neutrophils and eosinophils) were also observed in rodents. In studies with the long-term effects of toxicity, hexafluoropropene was not mutagenic in bacterial systems or mammalian cells. In the in vitro tests, the compound induced chromosome aberrations in Chinese hamster ovary cells. In in vivo studies in mice, the formation of micronuclei in bone marrow was observed. The negative result was obtained in the assay for unplanned DNA synthesis test in rat hepatocytes and in the dominant rat mutation assay. No effect of hexafluoropropene on fertility was observed. There is no data on carcinogenicity. The mechanism of hexafluoropropene toxicity is related to metabolism: path-way of S-conjugation with glutathione, in particular hydrolysis of the conjugate. During decomposition of the conjugate by the enzyme -lyase, active thiols appeared. Nephrotoxic activity of hexafluoropropene is associated with high levels of enzymes (β-lyases and N-deacetylases), which contribute to the formation of active thiols in renal tubules. The results of 3-month inhalation study on mice and rats were the basis for calculation of the MAC value of the hexafluoropropene. The critical organs of hexafluoropropene toxicity to rodents are kidneys. Based on the NOAEC value of 62 mg/m3 , the MAC value for hexafluoropropene at 8 mg/m3 was proposed. Neither short-term value (STEL) nor biological tolerance limit was established.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2017, 4 (94); 35-53
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies