Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "slag copper" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Recovery of copper from copper slag and copper slag flotation tailings by oxidative leaching
Autorzy:
Urosevic, D. M.
Dimitrijevic, M. D.
Jankovic, Z. D.
Antic, D. V.
Powiązania:
https://bibliotekanauki.pl/articles/109899.pdf
Data publikacji:
2015
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
copper slag
copper slag flotation tailings
leaching
sulphuric acid
ferric sulphate
hydrogen peroxide
Opis:
Copper smelter slag and copper smelter slag flotation tailings were leached using sulphuric acid solutions, without or with the addition of either ferric sulphate or hydrogen peroxide. Copper extraction from the slag was typically found to be twice as high as that from the slag flotation tailings. Hydrogen peroxide was determined to be the best lixiviant. Thus, copper and iron extractions were 63.4% and 48.6%, respectively, when leaching the slag with 3 M H2O2, after 120 minutes of reaction at room temperature. Copper dissolution was generally found to be the dominant process within the first 60 minutes of reaction, whereas iron dissolution dominated afterwards.
Źródło:
Physicochemical Problems of Mineral Processing; 2015, 51, 1; 73-82
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of a capacity increase in AG milling of copper slag
Autorzy:
Can, N. Metin
Mercan, Orberk
Powiązania:
https://bibliotekanauki.pl/articles/27323653.pdf
Data publikacji:
2023
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
autogenous mill
copper slag
modelling
simulation
capacity
Opis:
The verification of the desired capacity increase in the grinding circuits is performed by simulation studies as they suggest accurate and fast alternatives compared to expensive and labor-intensive methods, particularly for the evaluation of situations that require investment. In this study, simulation was used to evaluate the alternatives that can be made to increase the capacity from 38.86 tph to 90 tph in a grinding circuit where copper slag is autogenously milled. The slag sample was characterized by drop weight and abrasion tests to describe the breakage in autogenous (AG) milling. The performances of the existing circuit and equipment were determined by a comprehensive sampling study, and modeling studies were carried out to form the basis of the simulations. Simulation scenarios were evaluated as investment free and investment requiring alternatives. In the investment free option changing fresh feed size distribution was examined however, capacity could be increased up to only 42 tph. In investment option, increasing the mill motor capacities was simulated and 90 tph target throughput was provided. This result was validated in the plant by replacement of mill motors of AG and pebble mill for 1000 kW and 750 kW, respectively.
Źródło:
Physicochemical Problems of Mineral Processing; 2023, 59, 6; art. no. 175181
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of sulphation baking and autogenous leaching behaviour of Turkish metallurgical slag flotation tailings
Autorzy:
Kart, Elif Uzun
Powiązania:
https://bibliotekanauki.pl/articles/1445847.pdf
Data publikacji:
2021
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
copper smelter slag
flotation tailings
sulphation baking
autogenous leaching
base metals extraction
Opis:
Turkish metallurgical slag flotation tailing’s (MSFT) that has not been evaluated yet sulphation baking phase transformations and autogenous leaching behaviour were investigated. The MSFT in the study consists of the residual fayalite (FeO•SiO2) phase from the flotation, with a copper recovery of 87%, of the slag released during the smelting of the copper sulphide mine in northern Turkey, and the non-soluble glassy/amorphous structure containing the 0.34%Cu, 4.16%Zn and 0.15%Co base metals locked and doped to this phase. The effects of temperature (350 -650°C) and sulphuric acid dosages (4-10 ml) on sulphation baking were investigated by X-ray diffraction and sulphur analyses of the baked MSFT (B-MSFT) to produce soluble base metal sulphates. Since sulphated metals are a kind of metal salt, autogenous leaching was applied to the B-MSFTs only with purified water to dissolute copper, zinc and cobalt. X-ray diffraction patterns show the transformation of fayalite to oxide and sulphate phases due to sulphation baking. All dissolution values of Co and Zn obtained by autogenous leaching of B-MSFTs produced under all determined conditions are almost the same as one another. This indicates that Co and Zn are doped to fayalite together and that part of cobalt is doped to the zincite structure and liberated and sulphated together. This study showed that MSFTs decompose leading to liberation and sulphation of the doped base metals in its structure at a rate of ≥90%, and that they autogenously dissolve under atmospheric conditions leading to recovery in a simple and economic manner.
Źródło:
Physicochemical Problems of Mineral Processing; 2021, 57, 4; 107-116
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigation of iron selectivity behavior of copper smelter slag flotation tailing with hematitization baking and base metals leaching methods
Autorzy:
Kart, Elif Uzun
Yazğan, Zeynep Hazal
Gümüşsoy, Aleyna
Powiązania:
https://bibliotekanauki.pl/articles/2146871.pdf
Data publikacji:
2021
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
iron selectivity
hematitization baking
copper smelter slag flotation tailing
base metal leaching
Opis:
In this study, iron selectivity behaviour of copper smelter slag (CSS) flotation tailings (38.08% Fe, 0.35% Cu, 4.48% Zn, 0.16% Co, 0.37% S) having fayalite and magnetite as major minerals was investigated with hematitization baking and base metals leaching methods using mineralogical and chemical analyses. For selectivity of iron, it was baked at temperatures of 650-690-700-710-730°C. The aim of the baking is to transform the almost all of the iron in the fayalite into the oxidized (non-soluble) form and the base metals into the sulphated (soluble) form. The temperature that had the lowest hematitization rate of iron was found to be 650°C, and the highest temperature was found to be 730°C. To examine the dissolution behaviour of baked CSS flotation tailing was leached at 50°C at a 1/10 (w/v) for 1 hour by using water. After baking at 690°C calcine and leaching residue, S values were determinated to be approximately 17% and 9%, respectively. Baking made at 700⁰C, amount of sulfate also decreased to 10% and S content was measured as 4% of its leaching residue. As a result of this study, 690⁰C/700⁰C was determined as optimum conditions of hematitization baking and base metals were extracted selectively when the iron was remained at leaching residue in Fe2O3 phase. It was determined that, hematitization is high and the sulphates of the base metals are preserved at 700⁰C temperature. The fayalite phase completely decomposed into Si-O/Fe-O/Zn-S-O/Co-S-O compounds at 700⁰C baking which was the highest iron selective and base metals dissolute temperature.
Źródło:
Physicochemical Problems of Mineral Processing; 2021, 57, 5; 164--175
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Recovery of copper from smelting slag by sulphation roasting and water leaching
Autorzy:
Dimitrijevic, M. D.
Urosevic, D. M.
Jankovic, Z. D.
Milic, S. M.
Powiązania:
https://bibliotekanauki.pl/articles/110627.pdf
Data publikacji:
2016
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
copper
slag
sulphation
roasting
acid baking
leaching
Opis:
In this work extraction of copper and iron from a reverberatory furnace slag was studied. A two-step extraction procedure was followed. The first step was roasting of the slag in the presence of sulphuric acid at temperatures between 150 and 800oC. The second step was leaching of the resulting calcine with distilled water. The maximum copper extraction of about 94% was achieved. In this case, the slag was roasted at 250oC with sulphuric acid higher of about 33% than that stoichiometrically required, followed by water leaching of calcine at 50oC. About 55% of iron was also dissolved under these conditions. On the other hand, for the calcine obtained at sulphation temperature of 600oC, extraction of copper in a water leaching stage was still relatively high (about 79%), whereas that of iron was comparatively low (about 6%). Dissolution of copper and iron from the calcine was found to be very fast and was complete within the first few minutes. The water temperature in the leaching step was found to have no effect on extraction of copper and iron from the calcine in the range of 30 to 85oC.
Źródło:
Physicochemical Problems of Mineral Processing; 2016, 52, 1; 409-421
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies