Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Depression" wg kryterium: Temat


Wyświetlanie 1-9 z 9
Tytuł:
Quinic acid as a novel depressant for efficient flotation separation of scheelite from calcite
Autorzy:
Huang, Zheyu
Kuang, Jingzhong
Yu, Mingming
Ding, Dan
Powiązania:
https://bibliotekanauki.pl/articles/24085979.pdf
Data publikacji:
2023
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
quinic acid
scheelite
calcite
depression
selective adsorption
Opis:
There are difficulties to the conventional depressant for achieving separation of scheelite from calcite for the sake of their similar surface properties. The paper reported that a new depressant quinic acid (QA) was used for separating scheelite from calcite. The adsorption experiments, zeta potential experiment, contact angle, FTIR, XPS analysis and crystal chemistry analysis were utilized to known the depression mechanism of selectivity. The results showed that the recovery of calcite decreased drastically after QA added, whereas hardly influenced on scheelite. The tungsten concentrate could reach 66.24% WO3 grade and 89.46% recovery with 1.5×10-4 mol•L-1 QA at pH=9. The surface adsorption quantity of the QA on calcite was much greater than scheelite, which enhanced significantly the hydrophilicity of calcite surface. Due to its negative charge, QA could be adsorbed on the surface of calcite which had positive charge instead of that of scheelite with negative charge. Subsequently, free carboxyl groups of QA could chelated with Ca2+ species on the calcite surface to form stable chemical adsorption in order to prevent the Pb-BHA to form further adsorption on that, so there was no increase significantly on hydrophobicity. However, QA was obviously weak for adsorbing while Pb-BHA which could still be chemically adsorbed on scheelite surface of pre-treated with QA.
Źródło:
Physicochemical Problems of Mineral Processing; 2023, 59, 2; art. no. 166008
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of fenugreek-gum and particle size on performance of talc flotation
Autorzy:
Gu, G.
Mo, C.
Zhao, K.
Chen, Z.
Wang, X.
Powiązania:
https://bibliotekanauki.pl/articles/109940.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
talc
particle size
fenugreek-gum
depression
flocculation
Opis:
Talc usually exists as a gangue mineral in copper-nickel sulfide, molybdenite etc. In order to separate precious metals, naturally hydrophobic talc should be depressed effectively in flotation process. The effect of fenugreek-gum (FG) on the flotation performance of talc with different particle sizes was studied. The depression mechanism was investigated extensively through tests of flotation, adsorption and zeta potential, as well as infrared spectroscopy and laser particle size analysis. Flotation results indicated that the FG had a strong depression ability for talc with the particle size of -0.074 + 0.037 mm, -0.037 mm and -0.010 mm when proper dosage of FG was added. The coarse talc was completely depressed by 2.5 mg/ dm3 FG. When the particle size decreased, more FG was required to obtain the maximum depressing effect, which was verified by adsorption tests. FG reduced the electronegativity on the talc surface by chemical adsorption, and flocculation of talc powders caused a high efficient depressing effect.
Źródło:
Physicochemical Problems of Mineral Processing; 2018, 54, 3; 1026-1033
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effects of copper ions on malachite sulfidization flotation
Autorzy:
Yin, Wanzhong
Sheng, Qiuyue
Ma, Yingqiang
Sun, Haoran
Yang, Bin
Tang, Yuan
Powiązania:
https://bibliotekanauki.pl/articles/110331.pdf
Data publikacji:
2020
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
malachite
sulfidization flotation
Cu2+ ion
depression
Opis:
In this study, the effects of copper ions (Cu2+) on the sulfidization (Na2S) flotation of malachite was investigated using micro-flotation experiments, zeta-potential measurements, X-ray photoelectron spectroscopy (XPS) analysis, adsorption experiments, and Materials Studio simulation. The results indicated that the flotation recovery of malachite decreased after the pretreatment of the mineral particles with Cu2+ ions prior to the addition of Na2S. The results for zeta-potential measurements and XPS analysis revealed that less sulfide ion species in the pulp solution transferred onto the mineral surface, the sulfidization of malachite surface weakened. The adsorption amount of collector on the mineral surface decreased, and this finding was confirmed by the results of the zeta-potential and adsorption experiments. Materials Studio simulation revealed that the adsorption energy of HS- ions and C4H9OCSS- ions on malachite surface increased after the adding of Cu2+ ion. The competitive adsorption made Cu2+ ions depress sulfidization flotation of malachite, the dissolution of mineral surface affected the adsorption of reagents on it, and decreased the floatability of malachite.
Źródło:
Physicochemical Problems of Mineral Processing; 2020, 56, 2; 300-312
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The influence of cyanide salts and ferrous sulphate on pyrite flotation
Autorzy:
Kostovic, M.
Vucinic, D.
Powiązania:
https://bibliotekanauki.pl/articles/110668.pdf
Data publikacji:
2016
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
pyrite
flotation
ferrous sulphate
cyanide salts
depression
Opis:
The effect of cyanide salts as depressants, i.e. sodium cyanide (NaCN) and complex cyanide salts such as potassium ferricyanide (K3Fe(CN)6) and potassium ferrocyanide (K4Fe(CN)6), as well as combination of sodium cyanide with ferrous sulphate (FeSO4/NaCN) on pyrite flotation was investigated. Tests covered the frothless flotation of pyrite under different concentrations of depressants at various solution pH’s with potassium butyl xanthate (KBX) as collector. Flotation test results have shown that NaCN, and even more the combination of reagents FeSO4/NaCN are more successful in pyrite depression than complex cyanide salts, such as K3Fe(CN)6 and K4Fe(CN)6. Surface characteristics of pyrite were studied using rest potential (Eh) measurements and infrared attenuated total reflection spectroscopy (ATR-IR). In the presence of tested reagents in the flotation system, iron cyanide compounds and hydrated iron oxides were formed on pyrite surface. The composition of formed compounds depends not only on cyanide ions in the solution, but also on the pH of the system and solution species. These compounds, depending on the reagents used, are responsible for the resulting efficiency of the pyrite depression.
Źródło:
Physicochemical Problems of Mineral Processing; 2016, 52, 2; 609-619
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Flotation separation of scheelite from calcite using sodium polyacrylate as depressant
Autorzy:
Zhang, Y.
Chen, R.
Li, Y.
Wang, Y.
Luo, X.
Powiązania:
https://bibliotekanauki.pl/articles/110896.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
scheelite
calcite
flotation
sodium polyacrylate
selective depression
Opis:
The depressing properties of sodium polyacrylate (PA-Na) for calcite from scheelite were studied by microflotation experiments, zeta potentials, X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculation. Flotation results revealed that the selective depression effect of PA-Na was better than that of sodium silicate (Na2SiO3), and PA-Na can depress calcite more effectively than scheelite. The flotation recovery of scheelite and calcite kept at about 75% and 15% respectively at the pulp pH 9.3~9.6 and PA-Na concentration from 37.5 mg/dm3 to 50 mg/dm3. The zeta potentials of the minerals were significantly altered and the zeta potential of calcite became more negative than scheelite. XPS analysis deduced the occurrence of chemisorption between PA-Na and mineral surfaces, and the chemisorption of PA-Na on calcite was stronger than on scheelite. The results from DFT calculation demonstrated that the absolute value of the adsorption energy in the presence of PA-Na on the surface of calcite {104} was larger than on the surface of scheelite {111}. With the combination of the analysis, it could be concluded that calcite was more easily depressed than scheelite, and this finding remarkably matched with the microflotation experimental results. Furthermore, by using PA-Na as depressant, the flotation separation of scheelite from calcite can be achieved by controlling the flotation pH and PA-Na dosage.
Źródło:
Physicochemical Problems of Mineral Processing; 2018, 54, 2; 505-516
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ammonium chloride’s weakening effect on the copper activation of pyrite in flotation and the surface regulation mechanism behind it
Autorzy:
Zhang, Shengdong
Chen, Yumeng
Tong, Xiong
Xie, Xian
Lu, Yalin
Powiązania:
https://bibliotekanauki.pl/articles/110323.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
pyrite
depression
cuprammonium solution
pH buffering property
flotation
Opis:
The traditional separation process of pyrite and marmatite is carried out under highly alkaline conditions. Therefore, a large amount of lime is demanded and the zinc recovery cannot be guaranteed. However, under weakly alkaline conditions, copper-activated pyrite has good floatability, which is difficult to separate from marmatite. In this paper, ammonium chloride (NH4Cl) is used for depressing the flotation of copper-activated pyrite to achieve the separation of these two minerals under weakly alkaline environment. The flotation tests show that NH4Cl can significantly reduce the floatability of pyrite in weakly alkaline conditions. The results of adsorption tests and X-ray photoelectron spectroscopy (XPS) analyses indicate that NH4Cl can obviously change the composition of pyrite surface by increasing the content of iron/copper hydroxide and reducing the content of copper sulfides. Calculation of the solution composition demonstrates that the addition of NH4Cl results in the occurrence of Cu(NH3)n2+ and the pH buffering property. Based on these results, it can be concluded that the depression of NH4Cl on copper activated pyrite is mainly derived from two aspects: 1) the pH buffering property of the conjugated acid-base pair (NH4+/NH3) can impede the decline of OH- concentration, which results in more hydroxide adsorbed on pyrite; 2) NH3 (aq) competes with the pyrite surface to consume Cu2+through complexation, which causes a reduction in the amount of copper sulfides formed on the pyrite surface.
Źródło:
Physicochemical Problems of Mineral Processing; 2019, 55, 5; 1070-1081
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Depression effect of corn starch on muscovite mica at different pH values
Autorzy:
Peng, W.
Zhang, L.
Qiu, Y.
Song, S.
Powiązania:
https://bibliotekanauki.pl/articles/110573.pdf
Data publikacji:
2016
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
muscovite mica
corn starch
pulp pH
depression effect
Opis:
The depression effect of corn starch on the surface of muscovite mica powder at different pulp pH value was investigated. The experiments were performed on single mineral, and its flotation performance was studied by flotation tests, adsorption quantity measurement, zeta-potential technique and Fourier transform infrared (FT-IR). The results indicated that the depression effect was varied with the pulp pH value when dodecylamine chloride (DDA) was used as collector, the strongest inhibitory effect appeared at pH 2 and the zeta-potential of muscovite mica increased overall after conditioned with corn starch solution. It was confirmed by the FT-IR spectra that the corn starch indeed adsorbed on the surface of muscovite mica powder and physical adsorption was occurred between muscovite mica and corn starch. This study leads to a better understanding of the depression effect of corn starch on the surface of muscovite mica powder.
Źródło:
Physicochemical Problems of Mineral Processing; 2016, 52, 2; 780-788
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The depression mechanism on pyrite in a low-alkaline system with combined depressants : Experiment, HSC, DFT and ToF–SIMS studies
Autorzy:
Li, Suqi
Yuan, Jiaqiao
Ding, Zhan
Li, Jie
Yu, Anmei
Wen, Shuming
Bai, Shaojun
Powiązania:
https://bibliotekanauki.pl/articles/24085821.pdf
Data publikacji:
2023
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
pyrite
calcium hypochlorite
lime
depression
low alkaline system
Opis:
Depression of pyrite in a low-alkaline system has sparked soaring interests for the multi-metal sulfide minerals flotation recently. This study investigates effects of combined depressants (Ca(ClO)2 and CaO) on pyrite flotation with butyl xanthate (KBX). Micro-flotation experiments indicate that the addition of 200 mg/L combined depressants (a mass ratios of CaO to Ca(ClO) 2 of 2:3) and 1.0×10−3 mol/L KBX at pH 9.5 can effectively depresses the flotation of pyrite, and a minimum pyrite recovery rate of 12.5% is obtained. Basic thermodynamic evaluation results confirm the participation of Ca(ClO) 2 significantly decrease the negative Gibbs free energies of pyrite oxidation reaction. Besides, the calcium species (Ca(OH) 2, Ca2+ and Ca(Cl) 2) will spontaneously transform into CaCO3,and it is the ultimate dominant calcium species in the CO32- system. Density functional theory (DFT) results indicate that CaCO3 can chemically adsorb onto the pyrite surface with an adsorption energy of –671.13 kJ/mol. The O1 and Ca atoms mainly contribute to the bonding process and are responsible for the stable adsorption of CaCO3. ToF-SIMS results provide strong evidence that the combined depressants increase the amount of hydrophilic species and decrease dixanthogen adsorption onto the pyrite surface. The thickness of the whole formed hydrophilic species is approximately 50 nm. Semiquantitative amounts of hydrophilic species follow the order of hydroxy calcium>iron carbonyl>calcium carbonate. Overall, hydrophilic species repulse adsorption of dixanthogen and significantly reduce the flotation performance of pyrite.
Źródło:
Physicochemical Problems of Mineral Processing; 2023, 59, 3; art. no. 168454
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Magnetic seeding depression in flotation of hematite ore slimes
Autorzy:
Yue, T.
Wu, X.
Powiązania:
https://bibliotekanauki.pl/articles/110503.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
magnetic seeds
magnetic seeding flotation (MSF)
magnetic seeding agglomeration (MSA)
magnetic seeing depression (MSD)
hematite
Opis:
Magnetic seeding depression (MSD), i.e. adding organic depressant (such as starch) and magnetic seeds and applying a low field intensity pre-magnetization for depressing target mineral in flotation, was investigated in the reverse flotation of hematite ore slimes. Flotation tests found that the iron recovery increased with the addition of magnetic seeds; the depressing ability of starch in flotation was further enhanced by the MSD. The increased adsorption density of starch on target mineral hematite and apparent size enlargement of fine minerals are two reasons for the MSD. Based on FTIR, VSM and AFM measurements it was demonstrated that the starch acted as a bridging adsorption between hematite and magnetic seeds by hydrogen bonding and chemisorption, and resultant coverage of the magnetic seeds and starch on hematite increased the magnetic susceptibility, being beneficial to the agglomeration of hematite fines by reducing the external magnetic intensity needed for agglomeration to take place. The model of the MSD was proposed.
Źródło:
Physicochemical Problems of Mineral Processing; 2018, 54, 3; 701-712
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies