Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Xu, Y." wg kryterium: Autor


Wyświetlanie 1-10 z 10
Tytuł:
One step purification of impurities in the leachate of weathered crust elution-deposited rare earth ores
Autorzy:
Zhou, F.
Feng, J.
Wang, Z.
Xu, Y.
Zhang, Z.
Chi, R.
Powiązania:
https://bibliotekanauki.pl/articles/110333.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
leachate
weathered crust
rare earth ore
leachate purification
precipitation
Opis:
It is necessary to control and reduce the high content of Al3+, Cu2+ and Pb2+ ions in the leachate of weathered crust elution-deposited rare earth ore to facilitate the rare earth recovery and the quality of rare earth products. Neither NH4HCO3 nor Na2S are suitable for removal of all impurity ions and meanwhile maintain high rare earth recovery. Conventionally, NH4HCO3 is firstly adopted to remove Al3+, and then Cu2+ and Pb2+ are removed by using Na2S. This two steps purification process is quite long and results in lots of complication in operation. In this paper, a one-step purification by using the compound of NH4HCO3 and Na2S was proposed to remove Al3+, Cu2+ and Pb2+. The results showed that after purification 89% Cu, 92% Pb and 74% Al were removed from the leachate solution by using 0.1 M compound of NH4HCO3/Na2S, while maintaining 89% rare earth. The optimal purification parameters were: volume ratio of NH4HCO3 to Na2S of 9:1, volume ratio of compound to leachate of 0.05:1, precipitation time of 30 min.
Źródło:
Physicochemical Problems of Mineral Processing; 2017, 53, 2; 1188-1199
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Removal of quinoline from aqueous solutions by lignite, coking coal and anthracite. Adsorption isotherms and thermodynamics
Autorzy:
Xu, H.
Huagn, G.
Li, X.
Gao, L.
Wang, Y.
Powiązania:
https://bibliotekanauki.pl/articles/110016.pdf
Data publikacji:
2016
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
quinoline adsorption
coking coal
adsorption isotherms
thermodynamics
Opis:
Based on the concept of circular economy, a novel method of industrial organic wastewater treatment by using adsorption on coal is introduced. Coal is used to adsorb organic pollutants from coking wastewaters. After adsorption, the coal would be used for its original purpose, its value is not reduced and the pollutant is thus recycled. Through systemic circulation of coking wastewater zero emissions can be achieved. Lignite, coking coal and anthracite were used as adsorbents in batch experiments. The quinoline removal efficiency of coal adsorption was investigated. The coking coal and anthracite exhibited properties well-suited for adsorption onto both adsorbents. The experimental data were fitted to Langmuir and Freundlich isotherms as well as Temkin, Redlich–Peterson (R-P) and Dubinin-Radushkevich (D-R) models. Both Freundlich Isotherm and D-R model provided reasonable models of the adsorption process. The thermodynamic parameters of quinoline adsorption on coking coal were calculated. The thermodynamic parameters indicated that the adsorption process is exothermic and is a physical adsorption. The △S° value indicated that the adsorption entropy decreased because the adsorbate molecule was under restrictions after it adsorption on the coal surface. The coal adsorption method for removing refractory organic pollutants is a great hope for achieving zero emission waste water for a coking plant.
Źródło:
Physicochemical Problems of Mineral Processing; 2016, 52, 1; 214-227
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pretreatment of coking wastewater by an adsorption process using fine coking coal
Autorzy:
Gao, L.
Li, S.
Wang, Y.
Gui, X.
Xu, H.
Powiązania:
https://bibliotekanauki.pl/articles/110417.pdf
Data publikacji:
2016
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
coking coal
coking wastewater
adsorption
COD
phenol
Opis:
A new technique for pretreatment of coking wastewater is introduced based on the concept of circular economy. Coal is fed into a coking system after adsorption. This study validates the feasibility of using coking coal to adsorb organic pollutants in coking wastewater. The sorption kinetics and equilibrium sorption isotherms of coking coal for removal of chemical oxygen demand (COD) and phenol from coking wastewater was also discussed in this paper. Gas chromatograph/mass spectroscopy (GC/MS) was used to detect changes in the quality of coking wastewater. The results showed that when coking coal dosage was 120 g/dm3, 65% of COD and 34% of phenol in waste water can be removed after 40 min of agitation. The surface functional groups of coking coal before and after adsorption were observed with a Fourier transform infrared spectrometer. The kinetics of COD and phenol adsorption from coking wastewater by coking coal fitted the pseudo second-order model. The adsorption process of coking coal can be classified into two categories, namely, rapid and slow. The Freundlich isotherm provided a better fit with all adsorption isotherms than the Langmuir isotherm. Coking coal could be a suitable low-cost adsorbent for recalcitrant organic pollutants.
Źródło:
Physicochemical Problems of Mineral Processing; 2016, 52, 1; 422-436
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Energy feature of a multi-flow column flotation process
Autorzy:
Cheng, G.
Yu, Y.
Ma, L.
Xia, W.
Xu, H.
Powiązania:
https://bibliotekanauki.pl/articles/109768.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
flotation column
turbulent kinetic energy
turbulent dissipation rate
bubble
Opis:
A cyclonic-static micro-bubble flotation column (FCSMC) has been widely used in mineral separation. FCSMC includes countercurrent, cyclone and jet flow mineralization zones in a single column. In this study, the energy feature of the three different zones was compared. The turbulent flow was evaluated in terms of the turbulent kinetic energy (k) and the turbulent dissipation rate (ε). An appropriate computing model was determined by comparing the flow field value measured by PIV with the results of the Fluent numerical simulation. Jet flow separation exhibited the maximum k and ε values among the three columns, whereas counter-current separation displayed the minimum values. The high circulating volumetric flowrate means great energy input and turbulent intensity. The higher turbulent dissipation rate, the smaller the bubble is. The better performance of the FCSMC was mainly attributed to the multiple mineralization steps. The floatability of mineral particles gradually decreases with an increase in flotation time, the mineralization energy gradually increased to overcome the decrease in mineral floatability. By contrast, the countercurrent was beneficial for recovering the coarse particles, and the jet flow was beneficial for recovering the fine particles.
Źródło:
Physicochemical Problems of Mineral Processing; 2017, 53, 2; 1266-1284
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Adsorption mechanism of sodium oleate on titanium dioxide coated sensor surface using quartz crystal microbalance with dissipation
Autorzy:
Fan, G.
Liu, J.
Cao, Y.
Feng, L.
Xu, H.
Powiązania:
https://bibliotekanauki.pl/articles/110014.pdf
Data publikacji:
2016
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
QCM-D
TiO2 coated sensor surface
sodium oleate
adsorption mechanism
Opis:
Quartz Crystal Microbalance with Dissipation (QCM-D) was firstly applied to investigate the adsorption mechanism of sodium oleate on TiO2 coated sensor surface. The effects of pH value, sodium oleate concentration, and temperature on TiO2 coated sensor surface were evaluated systematically using the QCM-D technique. Zeta potential, surface tension, adsorption isotherms, and adsorption thermodynamics were employed to characterize the adsorption process. The results showed the advantages of QCM-D on the investigation of the adsorption process. Additionally, the electrostatic equilibrium adsorption data was well matched to the Langmuir isotherm. Based on the thermodynamic analysis, adsorption was a spontaneous and endothermic physisorption process.
Źródło:
Physicochemical Problems of Mineral Processing; 2016, 52, 2; 597-608
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A study of bubble-particle interactions in a column flotation process
Autorzy:
Cheng, G.
Shi, C.
Yan, X.
Zhang, Z.
Xu, H.
Lu, Y.
Powiązania:
https://bibliotekanauki.pl/articles/109635.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
particle
bubble
column flotation
collision
attachment
detachment
Opis:
Bubble-particle interactions play an important role in flotation. This study examines the behaviour of bubble clusters in a turbulent flotation cell. Particularly, the bubble-particle interaction characteristics in flotation are investigated. The bubble size in a flotation column was measured using an Olympus i-SPEED 3 high-speed camera. Relationships between the circulating volume, bubble size and bubble terminal velocity were discussed. Probabilities of collision, attachment, detachment and acquisition between bubbles and particles in different circulating volumes were calculated based on the flotation kinetic theory. Using the extended Derjaguin–Landau–Verwey–Overbeek (EDLVO) theory, the relationship between the potential energy and distance in bubble-particle interaction was analysed. The results demonstrated that as the circulating volume increased, the bubble size and velocity decreased. When the circulating volume increased from 0.253 to 0.495 m3/h, the bubble diameter decreased from 511 to 462 μm, and the corresponding bubble velocity decreased from 43.1 to 37.5 mm/s. When the circulating volume remained constant as the particle size increased, probabilities of collision, attachment, detachment and acquisition increased. When the particle size remained constant as the circulating volume increased, these probabilities also increased. At a constant circulating volume as the particle size increased, the absolute value of the total potential energy between the particle and bubble increased. When the distance between the bubble and particle was 30 nm, the energy barrier appeared.
Źródło:
Physicochemical Problems of Mineral Processing; 2017, 53, 1; 17-33
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Flotation separation of cervantite from quartz
Autorzy:
Wang, J.
Hua, Y.
Yu, S.
Xiao, J.
Xu, L.
Wang, Z.
Powiązania:
https://bibliotekanauki.pl/articles/110941.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
cervantite
quartz
dodecylamine
flotation
density functional theory
Opis:
Flotation separation of cervantite (Sb2O4) from quartz was investigated using dodecylamine (DDA) as a collector. Experiments were conducted on single minerals and on a synthetic mixture of quartz and cervantite. Flotation separation mechanisms were investigated using the zeta potential technique, solution chemistry principles, density functional calculations and Fourier Transform Infrared (FT-IR) spectroscopy. The results indicated that DDA, primarily in the form of molecules, exhibited excellent performance in flotation of cervantite and quartz at pH 10.5. The adsorption energy of the DDA molecules on the cervantite surface was greater than the adsorption energy of water molecules, while the adsorption energy of DDA on the quartz surface was less than the adsorption energy of water molecules. DDA molecules can be adsorbed on the quartz surface to a certain extent, but it was difficult for the same molecule to be adsorbed on the cervantite surface in the pulp. This resulted in flotation of quartz. DDA molecules were adsorbed on quartz not only through physical adsorption but also by hydrogen bonding. However, cervantite could not be floated at pH 10.5 since adsorption of DDA molecules occurred through weak physical bonds on cervantite.
Źródło:
Physicochemical Problems of Mineral Processing; 2017, 53, 2; 1119-1132
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Removal of quinoline from aqueous solutions by lignite, coking coal and anthracite. Adsorption kinetics
Autorzy:
Xu, H.
Wang, Y.
Huagn, G.
Fan, G.
Gao, L.
Li, X.
Powiązania:
https://bibliotekanauki.pl/articles/110664.pdf
Data publikacji:
2016
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
quinoline adsorption
coking coal
kinetics
adsorption activation energy
coal adsorption
Opis:
Basing on the concept of circular economy, a novel method of industrial organic wastewater treatment by using adsorption on coal is introduced. Coal is used to adsorb organic pollutants from coking wastewaters. After adsorption, the coal would be used in its original purpose, as its value was not reduced and the pollutant was reused. Through the systemic circulation of coking wastewater zero emissions can be achieved. Lignite, coking coal and anthracite were used as adsorbents in batch experiments. The quinoline removal efficiency of coal adsorption was investigated. Both the coking coal and anthracite exhibited properties well-suited for quinoline adsorption removal. The experimental data were fitted to the pseudo-first- order and pseudo-second-order kinetic equations as well as intraparticle diffusion and Bangham models. An attempt was made to find the rate-limiting step involved in the adsorption processes. Both boundary-layer diffusion and intraparticle diffusion are likely involved in the rate-limiting mechanisms. Effect of pH on coal adsorptions by coking coal was investigated. The process of quinoline adsorption on coal was researched. The coal adsorption method for removing refractory organic pollutants is a great hope for achieving wastewater zero emission for coking plants.
Źródło:
Physicochemical Problems of Mineral Processing; 2016, 52, 1; 397-408
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Study of flotation behavior and mechanism of cervantite activation by copper ions
Autorzy:
Wang, J.
Wang, Y.
Fu, K.
Xu, L.
Wang, Z.
Sun, H.
Xiao, J.
Powiązania:
https://bibliotekanauki.pl/articles/110228.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
flotation
cervantite
copper ions
activation mechanism
Opis:
Copper-ion activation plays a highly important role in cervantite (Sb2O4) flotation. Without metal-ion activation, cervantite cannot be floated by sodium oleate. In this study, flotation tests were conducted to study the effect of Cu2+ on the flotation behaviours of cervantite and quartz (SiO2) as the main gangue mineral. Metal-ion adsorption capacities, zeta potentials, solution chemistry and X-ray photoelectron spectra were analyzed to study the adsorption behavior and mechanism of copper ions and sodium oleate interaction with the minerals surfaces. The results demonstrate that under weakly acidic conditions, cervantite can be flotated and separated from quartz by the addition of copper ions. The reason is that copper ions can be selectively adsorbed on the cervantite surface under weakly acidic conditions, thereby promoting the adsorption of sodium oleate onto the cervantite surface by chemical adsorption. Conversely, copper ions are weakly adsorbed on quartz surfaces below pH 6.1, and sodium oleate cannot be adsorbed on quartz surfaces by chemical adsorption. The hydroxy copper species are integral to the selective activation of cervantite over quartz.
Źródło:
Physicochemical Problems of Mineral Processing; 2018, 54, 3; 814-825
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kinetic research of quinoline, pyridine and phenol adsorption on modified coking coal
Autorzy:
Sun, X.
Xu, H.
Wang, J.
Ning, K.
Huang, G.
Yu, Y.
Ma, L.
Powiązania:
https://bibliotekanauki.pl/articles/110365.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
adsorption kinetics
modification
coking coal
coking wastewater
Opis:
Adsorption is widely used in wastewater treatment. In this work, the removal of quinoline, pyridine and phenol from coking wastewater by using modified coking coal, which was treated by four different modification methods i.e. acidification sodium hydroxide (5 mol/dm3), hydrochloric acid (5 mol/dm3) and acetic acid (5 mol/dm3) and low-temperature (105 oC) oxidation, was investigated. The modified coal was characterized by the surface area analysis, SEM, total acidity and basicity and FT-IR. The results showed that the surface area from high to low follows the order: modification with acetic acid, modification with hydrochloric acid, raw coal, modification with sodium hydroxide and modification with low-temperature. Experimental data were fitted to pseudo-first-order, pseudo-second-order and intra-particle diffusion. The adsorption of all followed pseudo-second-order kinetics. The result showed that the removal efficiency of coal modified by hydrochloric acid and acetic acid are higher than raw coal, while modified by sodium hydroxide and low-temperature are lower than raw coal., The coal modified by hydroxide acid had the best adsorption capacity.
Źródło:
Physicochemical Problems of Mineral Processing; 2018, 54, 3; 965-974
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-10 z 10

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies