Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Liu, Min" wg kryterium: Autor


Wyświetlanie 1-10 z 10
Tytuł:
Understanding the difficult selective separation characteristics of high-ash fine coal
Autorzy:
Yang, Zili
Liu, Min
Chang, Guohui
Xia, Yangchao
Li, Ming
Xing, Yaowen
Gui, Xiahui
Powiązania:
https://bibliotekanauki.pl/articles/1845210.pdf
Data publikacji:
2020
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
high-ash fine coal
flotation
rod grinding
floatability
slime coating
Opis:
As the supply of high-quality coals decreases and mechanical coal mining becomes more widespread, the high selective recovery of high-ash fine coal has become a prominent problem in the flotation process. Herein, we discuss the main reasons why the selective separation of high-ash fine coal is difficult. The analysis of high-ash fine coal properties shows that coarse particles (0.25-0.5 mm) account for 22.53% of the total size fraction and that 57.90% of the coal is moderate- or high-density (+1.4 g/cm3) intergrowth. Grinding experiments show that the traditional rod mill has little impact on the liberation of the intergrowth. Instead, its main function is to adjust the particle size composition to ensure that the particle sizes of high-ash fine coal are within the particle size range suitable for flotation. The flotation results show that a clean coal yield of 30.42%, with a 12.46% ash content, is obtained with the optimal flotation parameters through the roughing and cleaning flotation process. However, the flotation results also show that in the separation of high-ash fine coal, it is difficult to obtain clean coal with a high yield and low ash content at the same time. This is mainly due to the similar floatability of moderate-density and low-density coal particles, which allows a large number of moderate-density coal particles to be recovered, and a significant slime coating of clay on the coal’s surface that is generated during the flotation process. The results of this work provide valuable guidance for high-ash fine coal industrial flotation applications.
Źródło:
Physicochemical Problems of Mineral Processing; 2020, 56, 5; 874-883
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pore structure and surface properties of diatomite with mechanical grinding and its influence on humidity control
Autorzy:
Hu, Zhibo
Zheng, Shuilin
Li, Jinyu
Zhang, Shuaiqian
Liu, Min
Wang, Zhicheng
Li, Jiaxin
Sun, Hongjuan
Powiązania:
https://bibliotekanauki.pl/articles/2175445.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
diatomite
mechanical grinding
pore structure
surface properties
humidity control performance
Opis:
Mechanical grinding (MG) is an effective method to regulate the pore structure and surface properties of mineral material. Grinding diatomite samples were prepared by horizontal sander under different grinding time. The pore structure and surface properties of grinding samples were characterized systematically by the particle size analysis, low temperature nitrogen adsorption, MIP, fractal theory, XRD, SEM, TEM, FTIR and surface hydroxyl density analysis. The humidity control performance (HCP) of grinding diatomite was tested under different temperature and relative humidity. The relationship among pore structure, surface properties and HCP was analyzed. The results show that macroporous is more easily damaged by mechanical force than mesoporous, and the internal blind holes structure can be opened. The HCP of diatomite is positively correlated with the specific surface area, mesoporous volume, the inhomogeneity of macroporous structure and the number of hydroxyl groups, while negatively correlated with the proportion of macroporous volume.
Źródło:
Physicochemical Problems of Mineral Processing; 2022, 58, 6; art. no. 153509
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Experimental study on electrokinetic of kaolinite particles in aqueous suspensions
Autorzy:
Min, F.
Zhao, Q.
Liu, L.
Powiązania:
https://bibliotekanauki.pl/articles/110918.pdf
Data publikacji:
2013
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
kaolinite
zeta potential
pH
immersion time
electrophoresis
Opis:
Influence of aqueous phase properties and process parameters on kaolinite particle zeta potential was quantified by electrophoresis experiments. The results indicated that pH strongly altered the zeta potential of kaolinite and it decreases at the beginning and then increases in the range of pH = 2–13. The activity of different cations changes the zeta potential and has the following tendency of Al3+ > Ca2+ > Mg2+ > Na+ and the zeta potential increases due to heterocoagulation of different mineral particles in suspension. It was found that the zeta potential of kaolinite particles increases after the suspension was stirred and decreases at the beginning, and then increases with soaking time. The FTIR results showed that the zeta potential takes into account ion adsorption and the change of Si–O, Al–O and Al–OH groups on the surface of the kaolinite particles.
Źródło:
Physicochemical Problems of Mineral Processing; 2013, 49, 2; 659-672
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influences of process water chemistry on reverse flotation selectivity of iron oxides
Autorzy:
Tang, Min
Wang, Dong
Wu, Yan
Liu, Dianwen
Powiązania:
https://bibliotekanauki.pl/articles/2175429.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
water chemistry
ion distribution
iron oxides
reverse flotation
Opis:
It is critical for water quality in flotation as it dramatically influences the chemical/electrochemical properties of mineral surfaces and their interactions with reagents. Many potential variations could alter the water chemistry: water recirculation, mineral dissolutions, reagent additions, etc. This study aimed to identify the key elements from the recycled water sources affecting the separation efficiency in a typical industrial flotation circuit of iron oxides through a series of bench/micro flotation tests, zeta potential measurement, etc. The built-up and distribution of the dominant cations/anions in the process water from the roughers in the flotation system was also analyzed and recorded by Inductively Coupled Plasma-Optical Emission (ICP-OES) for a period of about three months when the operations were stable. The flotation results pointed out that a concentrate with a sharp increase of 6.0% Fe recovery and 2.5% SiO2 content was obtained by using the recycled tailing water only in comparison by using fresh water. In contrast, a slight uptrend in the grade of Fe but a substantial loss of near 6.5% Fe recovery occurs by using the treated sewage water alone instead. This could attribute to the ion distributions in these water sources, in which Ca2+, Fen+, Mg2+ or SO42ions were determined as the key ions influencing the flotation behaviors of the iron ore. But the competitive effects of Fe3+ ions were more significant than the ones of Ca2+ or Mg2+ ions. And the occurrence of starch could deteriorate the dilution of silicates in concentration induced by Fe3+/Fe2+ ions. It can be explained by zeta potential measurement or solution chemistry of those ions, indicating that at 8.5-9.0, the coating of the precipitates of Fe(OH)3(s) induced by iron ions alters a reverse on the zeta potentials of quartz. The presence of SO42-ions, however, has a positive role in reducing the possibility of slime coating on silicates due to acting as a chelating agent of iron ions.
Źródło:
Physicochemical Problems of Mineral Processing; 2022, 58, 6; art. no. 151839
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Utilization of coal slime: Coal and kaolinite separation by classification, forward and reverse flotation method
Autorzy:
Shen, Liang
Qiao, Erle
Liu, Lingyun
Xue, Changguo
Liu, Binghe
Min, Fanfei
Powiązania:
https://bibliotekanauki.pl/articles/2146883.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
coal slime
classification
forward flotation
reverse flotation
Opis:
Coal slime is not only a solid waste, but also a source of energy. With the improvement of environmental protection requirements, the comprehensive utilization of slime has become an urgent problem for coal preparation plants. In this paper, we put forward a promising way of coal slime resource utilization. X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF) and laser particle sizer was used to analyze the properties of coal slime. Obtained results showed that the slime was mainly composed of the coal, kaolinite and quartz with a particle size of -100 μm. Most kaolinite minerals can be enriched in overflow when the feed pressure is 0.2 MPa by using hydrocyclone. 21.3% clean coal with ash content of 12.3% and 33.46% kaolinite with particle size of -5 μm can be recovered by forward flotation and reverse flotation respectively. Coal water slurry with 61% concentration can be prepared from reject of forward flotation and concentrate of reverse flotation at shear rate of 100 s-1. This study has an important practical application value in clean and efficient utilization of coal.
Źródło:
Physicochemical Problems of Mineral Processing; 2022, 58, 3; art. no. 147742
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Experimental study on the effect of ions on the surface hydration characteristics of fine quartz
Autorzy:
Liu, Chunfu
Min, Fanfei
Liu, Lingyun
Chen, Jun
Ren, Bao
Lv, Kai
Tan, Yujiao
Powiązania:
https://bibliotekanauki.pl/articles/2146921.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
quartz
hydration cation
particle sphericity
hydration factor
viscosity
Opis:
The fine quartz particle hydration and effects of metal ions on the hydration characteristics of fine quartz surface are investigated using the rheological experiment. Several important factors affecting hydration factors, such as particle sphericity, solution pH, ion species, ion concentration were investigated. The results show that viscosity and hydration factor of fine quartz suspension increase with the increase of solution pH. wherein quartz particles have more negative charges on the surface in alkaline environment and strong hydration repulsion; The introduction of metal ions enhances the hydration strength of fine quartz surface to a certain extent. In contrast, high valence and high concentration will increase the viscosity of fine quartz suspension, and the hydration factors of particle surface also increase. At the same ion concentration, the order of influence on the hydration factors of fine quartz particles is Mg2+ > Ca2+ > Na+ > K+. This finding has been attributed to the combination of metal ion hydration and its adsorption on the mineral surface. This study will provide the theoretical guiding significance for the refractory coal slime water and other mineral processing wastewater containing quartz particles.
Źródło:
Physicochemical Problems of Mineral Processing; 2022, 58, 4; art. no. 150280
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of ultrasonic pre-treatment on coal slime flotation
Autorzy:
Lv, Wenbao
Chen, Jun
Min, Fanfei
Hou, Baohong
Liu, Chunfu
Powiązania:
https://bibliotekanauki.pl/articles/1450106.pdf
Data publikacji:
2020
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
ultrasonic pretreatment
surface property
high-ash fine mud
flotation
Opis:
Combined with the characteristics of flotation feed originating from China’s Panyidong Coal Preparation Plant, the ash, zeta potential, X-ray fluorescence spectroscopy and contact angle test were used to study changes in the surface properties of flotation feed under ultrasonic pre-treatment, and its effect on flotation of coal slime. Results show that Preferred pre-treatment process is ultrasonic secondary treatment, ultrasonic secondary pre-treatment can remove most of the high-ash fine mud for instance kaolinite, montmorillonite and quartz in the coal slurry, reduce the surface electronegativity of coal particles, and increase the contact angle of coal particles. Thus, the concentrate ash content decreases to 13%, the recovery rate, yield of flotation concentrate and combustible matter recovery reach 92.6%, 90.9% and 97.6%, respectively.
Źródło:
Physicochemical Problems of Mineral Processing; 2020, 56, 1; 173-183
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Adsorption of methylamine cations on kaolinite basal surfaces : A DFT study
Autorzy:
Chen, Jun
Min, Fan-fei
Liu, Ling-yun
Jia, Fei-fei
Powiązania:
https://bibliotekanauki.pl/articles/949692.pdf
Data publikacji:
2020
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
kaolinite
methylamine cations
density functional theory
competitive adsorption
adsorption mechanism
Opis:
To explore the interaction of alkylamine surfactants with kaolinite, the density functional theory (DFT) method was used to calculate the single adsorption of different methylamine cation on kaolinite basal surfaces and the competitive adsorption of methylamine cation and water molecule on kaolinite basal surfaces, respectively. Different methylamine cations can adsorb on kaolinite basal surfaces by electrostatic interaction and hydrogen bonds, and the methylamine cations more easily adsorbed on kaolinite Si-O surface. In the case of competitive adsorption with water molecule, the methylamine cation is capable of flushing out the surrounding water molecule to get rid of its steric effect and stably adsorbing on kaolinite basal surfaces, and the adsorption state of the competitive adsorption system is more stable. The adsorption mechanism of methylamine cation on kaolinite basal surface should be the result of electrostatic interaction and hydrogen bonds, and the electrostatic interaction plays the main role.
Źródło:
Physicochemical Problems of Mineral Processing; 2020, 56, 2; 338-349
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Preconcentration of a low-grade betafite ore by dense medium cyclone
Autorzy:
Lv, Zihu
Wei, Min
Zhao, Dengkui
Wu, Dongyin
Liu, Changmiao
Cheng, Hongwei
Powiązania:
https://bibliotekanauki.pl/articles/2146943.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
preconcentration
betafite
dense medium cyclone
uranium
niobium
Opis:
In order to find an economical and feasible short process for betafite preconcentrating and to provide a reference for the development of similar low-grade uranium deposits, preconcentration of the betafite ore was investigated based on mineralogical characterization study, float-sink tests, and dense medium cyclone (DMC) separation experiments. The float-sink test results revealed that the gravity separation of the betafite ore was feasible, and the expected particle size range was chosen to be 3~0.3 mm. The effect of important parameters of the DMC experiment such as particle size, grade of the feed, separation density, and inlet pressure on the separation performance of betafite ore was studied. Under the optimal experimental conditions, the expanded experiments were performed and the heavy minerals contained 4557 ppm U and 5200 ppm Nb2O5 with a recovery of 88.86% and 79.73%, respectively, were obtained. Besides, the enrichment ratio (E) values of U and Nb2O5 were 14.24 and 12.78 severally, and the tailings discarding ratio (R) value was 93.76%. The results demonstrate that the preconcentration of low-grade betafite by DMC can remove a large number of tailings and obtain a high-grade uranium concentrate.
Źródło:
Physicochemical Problems of Mineral Processing; 2022, 58, 1; 1--14
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Electrokinetic and flotation behavior of rutile in the presence of lead ions and aluminium ions
Autorzy:
Cheng, Hongwei
Liu, Changmiao
Guo, Zhenxu
Feng, Ansheng
Wei, Min
Lv, Zihu
Wu, Dongyin
Zhao, Dengkui
Powiązania:
https://bibliotekanauki.pl/articles/110558.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
lead ions
aluminium ions
rutile
flotation
Opis:
The effects of Pb(II) ions and Al(III) ions on the electro kinetic and flotation behavior of rutile were investigated by micro-flotation tests, zeta potential measurements and solution chemistry analysis. Micro-flotation results indicate that the Pb(II) ions can effectively improve the flotation recovery of rutile while the Al(III) ions significantly inhibit the flotation of rutile. Zeta potential measurements reveal that a collector styrene phosphoric acid (SPA) can adsorb on the rutile surface after the addition of Pb(II) ions, but hardly adsorb on the rutile surface after the addition of Al(III) ions. Pb(II) ions adsorb on the rutile surface in the form of Pb(OH)+ and Pb(OH)2(s), and the latter one is the main reason that activates rutile flotation. Al(III) ions adsorb on the rutile surface mainly in the form of Al(OH)3(s), which prevent the direct interaction between the rutile and the collector, resulting in a decrease of rutile flotation recovery.
Źródło:
Physicochemical Problems of Mineral Processing; 2019, 55, 2; 458-466
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-10 z 10

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies