Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Liu, M. S." wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
A novel method to extract vanadium from high-grade vanadium slag: non-salt roasting and alkaline leaching
Autorzy:
Liu, B.
Meng, L.
Zheng, S.
Li, M.
Wang, S.
Powiązania:
https://bibliotekanauki.pl/articles/110480.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
high-grade vanadium slag
cleaner production
non-salt roasting
alkaline leaching
mechanisms
Opis:
A new method using non-salt roasting-alkaline leaching to treat vanadium slag was proposed in this study. The V(III) in vanadium slag is oxidized to V(V) by roasting and the latter can be effectively leached out as vanadate by alkaline leaching. This method possesses distinct advantage of being able to treat high-grade vanadium slag. For the South Africa high-grade vanadium slag, the maximum vanadium recovery of 98% was achieved when the reaction conditions were roasting temperature of 850 °C, roasting time of 2 h, alkali concentration of 30 wt.%, leaching temperature of 210 °C, and leaching time of 2 h. The roasting and leaching mechanisms have been well elucidated based on the XRD and SEM analysis results. The phases transitions of vanadium slag were clearly presented. This work has laid the foundation for the industrial application of non-salt roasting-alkaline leaching and provided new insights into effective extraction of high-grade vanadium slag.
Źródło:
Physicochemical Problems of Mineral Processing; 2018, 54, 3; 657-667
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An innovative technology for recovery of zinc, lead and silver from zinc leaching residue
Autorzy:
Zheng, Y.-X.
Lv, J.-F.
Liu, W.
Qin, W.-Q.
Wen, S.-M.
Powiązania:
https://bibliotekanauki.pl/articles/110688.pdf
Data publikacji:
2016
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
zinc leaching residue
lead sulfate
zinc sulfate
reduction roasting
flotation
Opis:
Zinc leaching residue is a good source of zinc and has a great potential to be utilized. However, it is very difficult to recover lead, zinc and silver from the residue by traditional technologies. In this study, a new technology based on conversions of PbSO4 and ZnSO4 in the residue to their respective sulfides by reduction roasting with coal powder followed by a flotation treatment was developed. The effects of roasting temperature, coal dosage, reaction time and pyrite dosage were investigated at a laboratory scale. The results showed that the conversion extent of PbSO4 and ZnSO4 under the optimal experimental conditions was 71.89 and 69.76%, respectively. A flotation concentrate containing 39.13% Zn, 6.93% Pb and 973.54 g/Mg Ag was obtained from the treated material, and the recovery of Zn, Pb and Ag was 48.38, 68.23 and 77.41%, respectively. The tailing containing ZnFe2O4 or Fe3O4 could be either stockpiled or further disposed.
Źródło:
Physicochemical Problems of Mineral Processing; 2016, 52, 2; 943-954
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Role of dissolved mineral species in quartz flotation and siderite solubility simulation
Autorzy:
Luo, X.
Wang, Y.
Ma, M.
Song, S.
Zhang, Y.
Deng, J.
Liu, J.
Powiązania:
https://bibliotekanauki.pl/articles/109459.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
quartz
solubility
siderite
calcium ion
temperature
flotation
Opis:
Quartz is, in most cases, the major gangue mineral found in the iron ores. Although it can be activated by calcium at strong alkaline pH, quartz nevertheless, reports to the concentrate with Fe when the iron ores contain siderite. It causes a poor concentrate grade and separation between quartz and iron minerals. The effect of siderite on reverse anionic flotation of quartz from hematite was studied in our previous investigations. In this work, the effect of siderite dissolution on the quartz recovery in the froth product and the effect of pH, ions and temperature on siderite dissolution were investigated. Microflotation, PHREEQC simulation, solution chemistry calculation and Fourier transform infrared spectroscopy (FTIR) measurements were conducted. It was observed that the dissolved species of siderite exhibited negative impact on quartz flotation. This influence became weak to some extent by either stripping the dissolved species or shortening dissolution time. Siderite was easily dissolved in the presence of calcium ion under strong alkaline conditions and its solubility increased with increasing the calcium ion concentrate and temperature. When the calcium ion was added as an activator of quartz under strong alkaline conditions (pH>9.96), calcium existed mainly in the CaCO3 precipitation form according to the solubility rule in the presence of siderite. This form could adsorb onto quartz surfaces and further the chemical reaction between starch and quartz was monitored by FTIR measurements. This study provides a further supplement for previous study. A potential strategy is suggested that finding a collector used at low temperature or flotation under neutral (or weak alkaline) medium is helpful to the reverse flotation of iron ores containing siderite.
Źródło:
Physicochemical Problems of Mineral Processing; 2017, 53, 2; 1241-1254
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Trace muscovite dissolution separation from vein quartz by elevated temperature and pressure acid leaching using sulphuric acid and ammonia chloride solutions
Autorzy:
Lin, M.
Pei, Z.-Y.
Lei, S.-M.
Liu, Y.-Y.
Xia, Z.-J.
Xie, F.-X.
Powiązania:
https://bibliotekanauki.pl/articles/110755.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
vein quartz
muscovite
sulphuric acid
ammonium chloride
acid leaching
Opis:
Effects of sulphuric acid and ammonia chloride on muscovite dissolution were studied in acid leaching of vein quartz under elevated temperature and pressure. The leaching processes have been studied in detail by analyzing sources of impurity minerals, optimizing leaching process, analyzing leaching kinetics of Al in muscovite and charactering leaching mechanism of muscovite. The results showed that elements of Al and K mainly occurred in muscovite, and 98.10% or more of muscovite could be removed by acid leaching, while the process had limited influence on the particle size of quartz sand. Leaching of Al in the quartz ore was mainly controlled by chemical reaction. A calcination process and ammonia chloride were used for reducing chemical reaction resistance by damaging crystal structure of muscovite and providing stable acid leaching environment. Combined with the calcination process, muscovite, as a main gangue mineral, was effectively extracted during acid leaching of vein quartz at elevated temperature and pressure.
Źródło:
Physicochemical Problems of Mineral Processing; 2018, 54, 2; 448-458
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies