Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Lü, X." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Study on buildup of fine weakly magnetic minerals on matrices in high gradient magnetic separation
Autorzy:
Zheng, X.
Wang, Y.
Lu, D.
Powiązania:
https://bibliotekanauki.pl/articles/109662.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
particle buildup
force equilibrium
magnetic matrices
magnetic separation
Opis:
Buildup of magnetic mineral particles on matrices determines the saturated deposit volume of minerals, which is of great importance in the high gradient magnetic separation (HGMS) systems. In this paper buildup of fine weakly magnetic minerals on the matrix is studied with a force equilibrium model. Elaborate rules of particle buildup on the matrix are presented. An imaginary sector ring is used to approximately quantify the volume of saturated particle buildup. The influence of the particle size, magnetic induction, fluid viscosity and velocity as well as matrix size on saturated particle buildup is investigated and discussed. With the same matrix size, the saturated buildup volume decreases with the decrease of the particle size, applied magnetic induction and increase of the fluid viscosity and velocity. The saturated buildup volume normalized by the matrix volume, and the ratio of particle deposit volume to the matrix volume (Vd/Vm) decreases with the increase of the matrix size. Under the same matrices packing fraction, the total mineral deposit volume, when adopting small size matrices, is larger than that when adopting large size matrices. Only small size matrices can be used for recovery of minerals in size of several micrometers. Based on performed analyses, the ore feeding time in a cycle for a cyclic HGMS system and the rotation speed of the swivel for a continuous HGMS system under different circumstances are also discussed.
Źródło:
Physicochemical Problems of Mineral Processing; 2017, 53, 1; 94-109
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of oxidation on the wetting of coal surfaces by water: experimental and molecular dynamics simulation studies
Autorzy:
Li, E.
Lu, Y.
Cheng, F.
Wang, X.
Miller, J. D.
Powiązania:
https://bibliotekanauki.pl/articles/109792.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
wettability
oxidation
molecular dynamics simulation
hydrogen bonding
contact angles
coal surfaces
Opis:
The wettability of coal surfaces by water continues to be one of the key factors which determines the success of coal flotation. Consequently, oxidation of coal surfaces is a fundamental issue of interest. In this work, the effect of oxidation on the wetting of coal surfaces and the interaction between water molecules and oxygen-containing sites at the coal surface was investigated based on advancing/receding contact angle measurements and molecular dynamics simulations. For the simulation studies, a flat coal surface was constructed with the assistance of the molecular repulsion between graphite surfaces and the assembly of Wiser coal molecules. Our results indicated that the simulated advancing and receding contact angles were very similar, and both of them decreased, as expected, with an increase of hydroxyl sites at the coal surface. The good agreement between the simulated advancing/receding contact angles and the experimental receding contact angle values suggested that the configuration of the systems and the set of parameters for the simulation were appropriate. The spreading of water is mainly due to the hydrogen bonds formed between the interfacial water molecules and the hydroxyl sites at the coal surface. The hydroxyl groups show stronger hydration capacity than other oxygen-containing groups according to the calculated hydrogen bonds and interaction energies.
Źródło:
Physicochemical Problems of Mineral Processing; 2018, 54, 4; 1039-1051
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A study of bubble-particle interactions in a column flotation process
Autorzy:
Cheng, G.
Shi, C.
Yan, X.
Zhang, Z.
Xu, H.
Lu, Y.
Powiązania:
https://bibliotekanauki.pl/articles/109635.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
particle
bubble
column flotation
collision
attachment
detachment
Opis:
Bubble-particle interactions play an important role in flotation. This study examines the behaviour of bubble clusters in a turbulent flotation cell. Particularly, the bubble-particle interaction characteristics in flotation are investigated. The bubble size in a flotation column was measured using an Olympus i-SPEED 3 high-speed camera. Relationships between the circulating volume, bubble size and bubble terminal velocity were discussed. Probabilities of collision, attachment, detachment and acquisition between bubbles and particles in different circulating volumes were calculated based on the flotation kinetic theory. Using the extended Derjaguin–Landau–Verwey–Overbeek (EDLVO) theory, the relationship between the potential energy and distance in bubble-particle interaction was analysed. The results demonstrated that as the circulating volume increased, the bubble size and velocity decreased. When the circulating volume increased from 0.253 to 0.495 m3/h, the bubble diameter decreased from 511 to 462 μm, and the corresponding bubble velocity decreased from 43.1 to 37.5 mm/s. When the circulating volume remained constant as the particle size increased, probabilities of collision, attachment, detachment and acquisition increased. When the particle size remained constant as the circulating volume increased, these probabilities also increased. At a constant circulating volume as the particle size increased, the absolute value of the total potential energy between the particle and bubble increased. When the distance between the bubble and particle was 30 nm, the energy barrier appeared.
Źródło:
Physicochemical Problems of Mineral Processing; 2017, 53, 1; 17-33
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies