Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "stochastic differential equation" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Stochastic model of drug concentration level during IV-administration
Autorzy:
Dzhalladova, Irada
Růžičková, Miroslava
Powiązania:
https://bibliotekanauki.pl/articles/29519179.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
IV-administration
deterministic model
stochastic differential equation
mean value
delay differential equation
Opis:
A stochastic model describing the concentration of the drug in the body during its IV-administration is discussed. The paper compares a deterministic model created with certain simplifications with the stochastic model. Fluctuating and irregular patterns of plasma concentrations of some drugs observed during intravenous infusion are explained. An illustrative example is given with certain values of drug infusion rate and drug elimination rate.
Źródło:
Opuscula Mathematica; 2022, 42, 6; 833-847
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Backward stochastic variational inequalities driven by multidimensional fractional Brownian motion
Autorzy:
Borkowski, D.
Jańczak-Borkowska, K.
Powiązania:
https://bibliotekanauki.pl/articles/254731.pdf
Data publikacji:
2018
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
backward stochastic differential equation
fractional Brownian motion
backward stochastic variational inequalities
subdifferential operator
Opis:
We study the existence and uniqueness of the backward stochastic variational inequalities driven by m-dimensional fractional Brownian motion with Hurst parameters Hk (k = 1,... m) greater than 1/2. The stochastic integral used throughout the paper is the divergence type integral.
Źródło:
Opuscula Mathematica; 2018, 38, 3; 307-326
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On potential kernels associated with random dynamical systems
Autorzy:
Hmissi, M.
Mokchaha, F.
Hmissi, A.
Powiązania:
https://bibliotekanauki.pl/articles/1397853.pdf
Data publikacji:
2015
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
dynamical system
random dynamical systems
random differential equations
stochastic differential equation
potential kernel
domination principle
Lyapunov function
Opis:
Let $(\Theta;, \phi)$ be a continuous random dynamical system defined on a probability space $(\Omega, F, P)$ and taking values on a locally compact Hausdorff space E. The associated potential kernel V is given by $V f(\omega, x) = \int_0^\infty f (\Theta_t \omega, \phi(t, \omega)x)dt, \omega \in \Omega, x \in E$. In this paper, we prove the equivalence of the following statements: 1. The potential kernel of $(\Theta, \phi)$ is proper, i.e. $V f$ is x-continuous for each bounded, x-continuous function with uniformly random compact support. 2. $(\Theta, \phi)$ has a global Lyapunov function, i.e. a function $ L : \Omega \times E \rightarrow (0, \infty) $ which is x-continuous and $ L(\Theta_t\omega, \phi(t,\omega)x) \downarrow 0$ as $ t \uparrow \infty $. In particular, we provide a constructive method for global Lyapunov functions for gradient-like random dynamical systems. This result generalizes an analogous theorem known for deterministic dynamical systems.
Źródło:
Opuscula Mathematica; 2015, 35, 4; 499-515
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ruin probability in a risk model with variable premium intensity and risky investments
Autorzy:
Mishura, Y.
Perestyuk, M.
Ragulina, O.
Powiązania:
https://bibliotekanauki.pl/articles/254807.pdf
Data publikacji:
2015
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
risk process
infinite-horizon ruin probability
variable premium intensity
risky investments
exponential bound
stochastic differential equation
explosion time
existence and uniqueness theorem
supermartingale property
Opis:
We consider a generalization of the classical risk model when the premium intensity depends on the current surplus of an insurance company. All surplus is invested in the risky asset, the price of which follows a geometric Brownian motion. We get an exponential bound for the infinite-horizon ruin probability. To this end, we allow the surplus process to explode and investigate the question concerning the probability of explosion of the surplus process between claim arrivals.
Źródło:
Opuscula Mathematica; 2015, 35, 3; 333-352
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies