Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "METRIC" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
All metric bases and fault-tolerant metric dimension for square of grid
Autorzy:
Saha, Laxman
Basak, Mithun
Tiwary, Kalishankar
Powiązania:
https://bibliotekanauki.pl/articles/2048644.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
code
resolving set
metric dimension
fault-tolerant resolving set
fault-tolerant metric dimension
Opis:
For a simple connected graph G = (V,E) and an ordered subset W = {w1, w2, . . . , wk} of V , the code of a vertex v ∈ V , denoted by code(v), with respect to W is a k-tuple (d(v, w1), . . . , d(v, wk)), where d(v, wt) represents the distance between v and wt. The set W is called a resolving set of G if code(u) ≠ code(v) for every pair of distinct vertices u and v. A metric basis of G is a resolving set with the minimum cardinality. The metric dimension of G is the cardinality of a metric basis and is denoted by β(G). A set F ⊂ V is called fault-tolerant resolving set of G if F \ {v} is a resolving set of G for every v ∈ F. The fault-tolerant metric dimension of G is the cardinality of a minimal fault-tolerant resolving set. In this article, a complete characterization of metric bases for G2 mn has been given. In addition, we prove that the fault-tolerant metric dimension of G2 mn is 4 if m + n is even. We also show that the fault-tolerant metric dimension of G2 mn is at least 5 and at most 6 when m + n is odd.
Źródło:
Opuscula Mathematica; 2022, 42, 1; 93-111
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The metric dimension of circulant graphs and their Cartesian products
Autorzy:
Chau, K.
Gosselin, S.
Powiązania:
https://bibliotekanauki.pl/articles/255804.pdf
Data publikacji:
2017
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
metric dimension
circulant graph
Cartesian product
Opis:
Let G = (V, E) be a connected graph (or hypergraph) and let d(x,y) denote the distance between vertices x,y ∈V(G). A subset W ⊆V(G) is called a resolving set for G if for every pair ol distinct vertices x, y ∈ (G), there is w ∈W such that d(x,w) ≠d(y,w). The minimum cardinality of a resolving set for G is called the metric dimension of G, denoted by β (G). The circulant graph Cn(l, 2,... , t) has vertex set {v0, v1 …, vn-1} and edges [formula] where 0 ≤ i ≤ n — 1 and 1 ≤j ≤ t and the indices are taken modulo [formula]. In this paper we determine the exact metric dimension olthe circulant graphs Cn(l, 2,... , t). extending previous results due to Borchert and Gosselin (2013), Grigorious et al. (2014), and Vetrik (2016). In particular, we show that [formula] for large enough n, which implies that the metric dimension ol these circulants is completely determined by the congruence class ol n modulo 2t. We determine the exact value of β Cn (l, 2,.. . , i)) for n ≡ 2 mod 2t and n =≡ (t + 1) mod 2t and we give better bounds on the metric dimension ol these circulants for n ≡ 0 mod 2t and n ≡ 1 mod 2t. In addition, we bound the metric dimension ol Cartesian products ol circulant graphs.
Źródło:
Opuscula Mathematica; 2017, 37, 4; 509-534
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the continuity of the integrable multifunctions
Autorzy:
Piątek, B.
Powiązania:
https://bibliotekanauki.pl/articles/255295.pdf
Data publikacji:
2009
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
multifunctions
Riemann integral
Aumann integral
Hausdorff metric
Opis:
The generalization of the Polovinkin theorem is studied.
Źródło:
Opuscula Mathematica; 2009, 29, 1; 81-88
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metric dimension of Andrasfai graphs
Autorzy:
Pejman, S. Batool
Payrovi, Shiroyeh
Behtoei, Ali
Powiązania:
https://bibliotekanauki.pl/articles/254963.pdf
Data publikacji:
2019
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
resolving set
metric dimension
Andrasfai graph
Cayley graph
Cartesian product
Opis:
A set W ⊆ V(G) is called a resolving set, if for each pair of distinct vertices u,v ∈ V(G) there exists t ∈ W such that d(u,t) ≠ d(v,t), where d(x,y) is the distance between vertices x and y. The cardinality of a minimum resolving set for G is called the metric dimension of G and is denoted by dimM(G). This parameter has many applications in different areas. The problem of finding metric dimension is NP-complete for general graphs but it is determined for trees and some other important families of graphs. In this paper, we determine the exact value of the metric dimension of Andrasfai graphs, their complements and [formula]. Also, we provide upper and lower bounds for [formula].
Źródło:
Opuscula Mathematica; 2019, 39, 3; 415-423
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
More on the behaviors of fixed points sets of multifunction and applications
Autorzy:
Alleche, B.
Nachi, K.
Powiązania:
https://bibliotekanauki.pl/articles/952787.pdf
Data publikacji:
2015
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
multifunction
fixed point
Pompeiu-Hausdorff metric
bounded proximal convergence
differential inclusion
Opis:
In this paper, we study the behaviors of fixed points sets of non necessarily pseudo-contractive multifunctions. Rather than comparing the images of the involved multifunctions, we make use of some conditions on the fixed points sets to establish general results on their stability and continuous dependence. We illustrate our results by applications to differential inclusions and give stability results of fixed points sets of non necessarily pseudo-contractive multifunctions with respect to the bounded proximal convergence.
Źródło:
Opuscula Mathematica; 2015, 35, 4; 427-443
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
More on linear and metric tree maps
Autorzy:
Kozerenko, Sergiy
Powiązania:
https://bibliotekanauki.pl/articles/1397335.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Markov graph
metric map
non-expanding map
linear map
graph homomorphism
Opis:
We consider linear and metric self-maps on vertex sets of finite combinatorial trees. Linear maps are maps which preserve intervals between pairs of vertices whereas metric maps are maps which do not increase distances between pairs of vertices. We obtain criteria for a given linear or a metric map to be a positive (negative) under some orientation of the edges in a tree, we characterize trees which admit maps with Markov graphs being paths and prove that the converse of any partial functional digraph is isomorphic to a Markov graph for some suitable map on a tree.
Źródło:
Opuscula Mathematica; 2021, 41, 1; 55-70
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces
Autorzy:
Saluja, G. S.
Nashine, H. K.
Powiązania:
https://bibliotekanauki.pl/articles/255521.pdf
Data publikacji:
2010
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
implicit iteration process
finite family of asymptotically quasi-nonexpansive mappings
common fixed point
convex metric space
Opis:
In this paper, we give some necessary and sufficient conditions for an implicit iteration process with errors for a finite family of asymptotically quasi-nonexpansive mappings converging to a common fixed of the mappings in convex metric spaces. Our results extend and improve some recent results of Sun, Wittmann, Xu and Ori, and Zhou and Chang.
Źródło:
Opuscula Mathematica; 2010, 30, 3; 331-340
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Meir-Keeler type common fixed point theorem for four mappings
Autorzy:
Akkouchi, M.
Powiązania:
https://bibliotekanauki.pl/articles/255615.pdf
Data publikacji:
2011
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
common fixed point for four mappings
weakly compatible mappings
Meir-Keeler type contractive condition
complete metric spaces
Opis:
In this paper, we prove a general common fixed point theorem for two pairs of weakly compatible self-mappings of a metric space satisfying a weak Meir-Keeler type contractive condition by using a class of implicit relations. In particular, our result generalizes and improves a result of K. Jha, R.P. Pant, S.L. Singh, by removing the assumption of continuity, relaxing compatibility to weakly compatibility property and replacing the completeness of the space with a set of four alternative conditions for maps satisfying an implicit relation. Also, our result improves the main result of H. Bouhadjera, A. Djoudi.
Źródło:
Opuscula Mathematica; 2011, 31, 1; 5-14
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies