Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Green's function" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Influence of an lp –perturbation on Hardy-Sobolev inequality with singularity a curve
Autorzy:
Ijaodoro, Idowu Esther
Thiam, El Hadji Abdoulaye
Powiązania:
https://bibliotekanauki.pl/articles/2050964.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Hardy-Sobolev inequality
positive minimizers
parametrized curve
mass
Green function
Opis:
We consider a bounded domain $\Omega~\text{of}~\mathbb{R}^{N}, N \geq 3, h \text{and} b$ continuous functions on $\Omega$. Let $Gamma$ be a closed curve contained in $\Omega$. We study existence of positive solutions $u \in H_{0}^{1}(\Omega)$ to the perturbed Hardy-Sobolev equation: $$-\Delta{}u + hu + bu^{1+\delta} = \rho_{\Gamma}^{-\sigma} u^{2_{\sigma}^{\star}-1}~\text{in}~\Omega,$$ where $2_{\sigma}^{\star} := \frac{2(N-\sigma)}{N-2}$ is the critical Hardy-Sobolev exponent $\sigma \in [0,2), 0 < \delta < \frac{4}{N-2}$ and $\rho_{\Gamma}$ is the distance function to $\Gamma$. We show that the existence of minimizers does not depend on the local geometry of $\Gamma$ nor on the potential $h$. For $N = 3$, the existence of ground-state solution may depends on the trace of the regular part of the Green function of $-\Delta + h$ and or on $b$. This is due to the perturbative term of order $1 + \delta$.
Źródło:
Opuscula Mathematica; 2021, 41, 2; 187-204
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the existence of positive continuous solutions for some polyharmonic elliptic systems on the half space
Autorzy:
Zine El Abidine, Z.
Powiązania:
https://bibliotekanauki.pl/articles/255368.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
polyharmonic elliptic system
Green function
Kato class
positive continuous solution
Schauder fixed point theorem
Opis:
We study the existence of positive continuous solutions of the nonlinear polyharmonic system (-Δ)mu + λqg(v) = 0, (-Δ)mv + μpf(u) = 0 in the half space [formula] where m ≥1 and n>2m.The nonlinear term is required to satisfy some conditions related to the Kato class [formula]. Our arguments are based on potential theory tools associated to (-Δ)m and properties of functions belonging to [formula].
Źródło:
Opuscula Mathematica; 2012, 32, 1; 91-113
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Existence of positive continuous weak solutions for some semilinear elliptic eigenvalue problems
Autorzy:
Zeddini, Noureddine
Sari, Rehab Saeed
Powiązania:
https://bibliotekanauki.pl/articles/2216186.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Green function
Kato class
nonlinear elliptic systems
positive solution
maximum principle
Schauder fixed point theorem
Opis:
Let D be a bounded $C^(1,1)$ -domain in $R^d$, d ≥ 2. The aim of this article is twofold. The first goal is to give a new characterization of the Kato class of functions $K(D)$ that was defined by $N$. Zeddini for $d = 2$ and by $H$. Mâagli and M. Zribi for $d ≥ 3$ and adapted to study some nonlinear elliptic problems in $D$. The second goal is to prove the existence of positive continuous weak solutions, having the global behavior of the associated homogeneous problem, for sufficiently small values of the nonnegative constants $λ$ and $μ$ to the following system $Δu = λf(x, u, v)$, $Δv = μg(x, u, v)$ in D, $u = ϕ_1$ and $v = ϕ_2$ on $∂D$, where $ϕ_1$ and $ϕ_2$ are nontrivial nonnegative continuous functions on $∂D$. The functions $f$ and g are nonnegative and belong to a class of functions containing in particular all functions of the type $f(x, u, v) = p(x)u^(α) h_1 (v)$ and $g(x, u, v) = q(x)h_2 (u)v^β$ with $α ≥ 1$, $β ≥ 1$, $h_1$, $h_2$ are continuous on $[0,∞)$ and $p$, $q$ are nonnegative functions in $K(D)$.
Źródło:
Opuscula Mathematica; 2022, 42, 3; 489-519
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Greens functions and existence of solutions of nonlinear fractional implicit difference equations with Dirichlet boundary conditions
Autorzy:
Cabada, Alberto
Dimitrov, Nikolay D.
Jonnalagadda, Jagan Mohan
Powiązania:
https://bibliotekanauki.pl/articles/29519501.pdf
Data publikacji:
2024
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
fractional difference
Dirichlet conditions
Green’s function
existence of solutions
Opis:
This article is devoted to deduce the expression of the Green’s function related to a general constant coefficients fractional difference equation coupled to Dirichlet conditions. In this case, due to the points where some of the fractional operators are applied, we are in presence of an implicit fractional difference equation. So, due to such a property, it is more complicated to calculate and manage the expression of the Green’s function than in the explicit case studied in a previous work of the authors. Contrary to the explicit case, where it is shown that the Green’s function is constructed as finite sums, the Green’s function constructed here is an infinite series. This fact makes necessary to impose more restrictive assumptions on the parameters that appear in the equation. The expression of the Green’s function will be deduced from the Laplace transform on the time scales of the integers. We point out that, despite the implicit character of the considered equation, we can have an explicit expression of the solution by means of the expression of the Green’s function. These two facts are not incompatible. Even more, this method allows us to have an explicit expression of the solution of an implicit problem. Finally, we prove two existence results for nonlinear problems, via suitable fixed point theorems.
Źródło:
Opuscula Mathematica; 2024, 44, 2; 167-195
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sign-changing Lyapunov functions in regularity of linear extensions of dynamical systems on a torus
Autorzy:
Tkocz-Piszczek, E.
Powiązania:
https://bibliotekanauki.pl/articles/255119.pdf
Data publikacji:
2008
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
invariant torus
Green's function of a problem of invariant toruses
regularity of linear extensions of dynamical systems
Opis:
In this paper we consider some sign-changing Lyapunov function in research on regularity of sets of linear extensions of dynamical systems on a torus.
Źródło:
Opuscula Mathematica; 2008, 28, 1; 93-101
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the blowing up solutions of the 4-d general q-Kuramoto-Sivashinsky equation with exponentially “dominated” nonlinearity and singular weight
Autorzy:
Baraket, Sami
Mahdaoui, Safia
Ouni, Taieb
Powiązania:
https://bibliotekanauki.pl/articles/29519212.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
singular limits
Green’s function
nonlinearity
gradient
nonlinear domain decomposition method
Opis:
Let Ω be a bounded domain in $ \mathbb{R}^4 $ with smooth boundary and let $ x^1, x^2, . . . , x^m $ be m-points in Ω. We are concerned with the problem $ \Delta^2 u - H(x, u, D^k u)=\rho^4 \prod_{i=1}^n | x - p_i |^{4 \alpha_i } f(x)g(u), $ where the principal term is the bi-Laplacian operator, $ H(x, u, D^k u)$ is a functional which grows with respect to $ Du $ at most like $ |Du|^q, 1 ≤ q ≤ 4, f : Ω → [0,+∞[ $ is a smooth function satisfying f(pi) > 0 for any i = 1, . . . , n, $ α_i $ are positives numbers and $ g : \mathbb{R} → [0,+∞[ $ satisfy $ |g(u)| ≤ ce^u $. In this paper, we give sufficient conditions for existence of a family of positive weak solutions $ (u_ρ)_{ρ>0} $ in Ω under Navier boundary conditions u = Δu = 0 on ∂Ω. The solutions we constructed are singular as the parameters ρ tends to 0, when the set of concentration $ S = {x^1, . . . , x^m} ⊂ Ω $ and the set $ Λ := {p_1, . . . , p_n} ⊂ Ω $ are not necessarily disjoint. The proof is mainly based on nonlinear domain decomposition method.
Źródło:
Opuscula Mathematica; 2023, 43, 1; 5-18
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Region of existence of multiple solutions for a class of robin type four-point bvps
Autorzy:
Verma, Amit K.
Urus, Nazia
Agarwal, Ravi P.
Powiązania:
https://bibliotekanauki.pl/articles/2052065.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Green’s function
monotone iterative technique
maximum principle
multi-point problem
Opis:
This article aims to prove the existence of a solution and compute the region of existence for a class of four-point nonlinear boundary value problems (NLBVPs) defined as \[ \begin{array}{lr} -u^{\prime\prime}(x) = \psi(x,u,u^{\prime}), & x \in (0,1) \\ u^{\prime}(0) = \lambda_{1}u(\xi), & u^{\prime}(1) = \lambda_{2}u(\eta) \end{array} \] where $I = [0, 1], 0 < \xi \leq \eta < 1 \text{ and } \lambda_{1} ,\lambda_{2} > 0$. The nonlinear source term $\psi \in C(I \times \mathbb{R}^{2}, \mathbb{R})$ is one sided Lipschitz in $u$ with Lipschitz constant $L_{1}$ and Lipschitz in $u^{\prime}$, such that $\vert \psi(x, u, u^{\prime}) - \psi(x, u, v^{\prime})\vert$. We develop monotone iterative technique (MI-technique) in both well ordered and reverse ordered cases. We prove maximum, anti-maximum principle under certain assumptions and use it to show the monotonic behaviour of the sequences of upper-lower solutions. The sufficient conditions are derived for the existence of solution and verified for two examples. The above NLBVPs is linearised using Newton’s quasilinearization method which involves a parameter k equivalent to $\text{max}_{u} \frac{\delta\psi}{\delta_{u}}$. We compute the range of $k$ for which iterative sequences are convergent.
Źródło:
Opuscula Mathematica; 2021, 41, 4; 571-600
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A general boundary value problem and its Weyl function
Autorzy:
Ryzhov, V.
Powiązania:
https://bibliotekanauki.pl/articles/255861.pdf
Data publikacji:
2007
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
abstract boundary value problem
symmetric operators
Green formula
Weyl function
Opis:
We study the abstract boundary value problem defined in terms of the Green identity and introduce the concept of Weyl operator function M(·) that agrees with other definitions found in the current literature. In typical cases of problems arising from the multidimensional partial equations of mathematical physics the function M(·) takes values in the set of unbounded densely defined operators acting on the auxiliary boundary space. Exact formulae are obtained and essential properties of M(·) are studied. In particular, we consider boundary problems defined by various boundary conditions and justify the well known procedure that reduces such problems to the "equation on the boundary" involving the Weyl function, prove an analogue of the Borg-Levinson theorem, and link our results to the classical theory of extensions of symmetric operators.
Źródło:
Opuscula Mathematica; 2007, 27, 2; 305-331
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies