Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "domination graph" wg kryterium: Wszystkie pola


Wyświetlanie 1-12 z 12
Tytuł:
Domination parameters of a graph with added vertex
Autorzy:
Zwierzchowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/2050876.pdf
Data publikacji:
2004
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
total domination number
strong domination number
subdivision
Opis:
Let $G = (V, E)$ be a graph. A subset $D \subseteq V$ is a total dominating set of $G$ if for every vertex $y \in V$ there is a vertex $x \in D$ with $xy \in E$. A subset $D \subseteq V$ is a strong dominating set of G if for every vertex $y \in V - D$ there is a vertex $x \in D$ with $xy \in E and deg_{G}(x) \geq deg_{G}(y)$. The total domination number $\gamma_{t}(G)$ (the strong domination number $\gamma_{S}(G)$) is defined as the minimum cardinality of a total dominating set (a strong dominating set) of $G$. The concept of total domination was first defined by Cockayne, Dawes and Hedetniemi in 1980 [1], while the strong domination was introduced by Sampathkumar and Pushpa Latha in 1996 [3]. By a subdivision of an edge $uv \in E$ we mean removing edge $uv$, adding a new vertex $x$, and adding edges $ux$ and $vx$. A graph obtained from $G$ by subdivision an edge $uv \in E$ is denoted by $G \oplus uxvx$. The behaviour of the total domination number and the strong domination number of a graph $G \oplus u_{x}v_{x}$ is developed.
Źródło:
Opuscula Mathematica; 2004, 24, 2; 231-234
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A note on a relation between the weak and strong domination numbers of a graph
Autorzy:
Boutrig, R.
Chellali, M.
Powiązania:
https://bibliotekanauki.pl/articles/255983.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
weak domination
strong domination
Opis:
In a graph G = (V, E) a vertex is said to dominate itself and all its neighbors. A set D ⊆ V is a weak (strong, respectively) dominating set of G if every vertex v ∈ V - S is adjacent to a vertex u ∈ D such that dG(v) ≥ dG(u) (dG(v) ≤ dG(u), respectively). The weak (strong, respectively) domination number of G, denoted by ϒw(G) (ϒs(G), respectively), is the minimum cardinality of a weak (strong, respectively) dominating set of G. In this note we show that if G is a connected graph of order n ≥ 3, then ϒw(G) + tϒs(G) ≤ n, where t = 3/(Δ+1) if G is an arbitrary graph, t = 3/5 if G is a block graph, and t = 2/3 if G is a claw free graph.
Źródło:
Opuscula Mathematica; 2012, 32, 2; 235-238
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Total connected domination game
Autorzy:
Bujtás, Csilla
Henning, Michael A.
Iršič, Vesna
Klavžar, Sandi
Powiązania:
https://bibliotekanauki.pl/articles/2050904.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
connected domination game
total connected domination game
graph product
tree
Opis:
The (total) connected domination game on a graph $G$ is played by two players, Dominator and Staller, according to the standard (total) domination game with the additional requirement that at each stage of the game the selected vertices induce a connected subgraph of $G$. If Dominator starts the game and both players play optimally, then the number of vertices selected during the game is the (total) connected game domination number $(\gamma_{tcg}(G))(\gamma_{cg(G)})$ of $G$. We show that $\gamma_{tcg}(G) \in \{\gamma_{cg}(G), \gamma_{cg}(G)+1, \gamma_{cg}(G)+2\}$, and consequently define $G$ as Class $i$ if $\gamma_{tcg}(G) = \gamma_{cg}(G)+i$ for $i \in \{0, 1, 2\}$. A large family of Class 0 graphs is constructed which contains all connected Cartesian product graphs and connected direct product graphs with minimum degree at least 2. We show that no tree is Class 2 and characterize Class 1 trees. We provide an infinite family of Class 2 bipartite graphs.
Źródło:
Opuscula Mathematica; 2021, 41, 4; 453-464
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dominating sets and domination polynomials of certain graphs, II
Autorzy:
Alikhani, S.
Yee-hock, P.
Powiązania:
https://bibliotekanauki.pl/articles/255942.pdf
Data publikacji:
2010
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
domination polynomial
dominating set
cycle
theta graph
Opis:
The domination polynomial of a graph G of order n is the polynomial [formula] where d(G, i) is the number of dominating sets of G of size i, and ϒ (G) is the domination number of G. In this paper, we obtain some properties of the coefficients of D(G, x). Also, by study of the dominating sets and the domination polynomials of specific graphs denoted by G'(m), we obtain a relationship between the domination polynomial of graphs containing an induced path of length at least three, and the domination polynomial of related graphs obtained by replacing the path by shorter path. As examples of graphs G' (m), we study the dominating sets and domination polynomials of cycles and generalized theta graphs. Finally, we show that, if n ≡ 0, 2(mod 3) and D(G, x) = D(Cn, x), then G = Cn.
Źródło:
Opuscula Mathematica; 2010, 30, 1; 37-51
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Edge subdivision and edge multisubdivision versus some domination related parameters in generalized corona graphs
Autorzy:
Dettlaff, M.
Raczek, J.
Yero, I. G.
Powiązania:
https://bibliotekanauki.pl/articles/255785.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
domination
paired domination
independent domination
edge subdivision
edge multisubdivision
corona graph
Opis:
Given a graph G = (V, E), the subdivision of an edge e = uv ∈ E(G) means the substitution of the edge e by a vertex x and the new edges ux and xv. The domination subdivision number of a graph G is the minimum number of edges of G which must be subdivided (where each edge can be subdivided at most once) in order to increase the domination number. Also, the domination multisubdivision number of G is the minimum number of subdivisions which must be done in one edge such that the domination number increases. Moreover, the concepts of paired domination and independent domination subdivision (respectively multisubdivision) numbers are denned similarly. In this paper we study the domination, paired domination and independent domination (subdivision and multisubdivision) numbers of the generalized corona graphs.
Źródło:
Opuscula Mathematica; 2016, 36, 5; 575-588
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On 2-rainbow domination number of functigraph and its complement
Autorzy:
Shaminezhad, Athena
Vatandoost, Ebrahim
Powiązania:
https://bibliotekanauki.pl/articles/255140.pdf
Data publikacji:
2020
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
2-rainbow domination number
functigraph
complement
cubic graph
Opis:
Let G be a graph and ƒ : V(G) → P({1, 2}) be a function where for every vertex v ∈ V(G), with ƒ (v) = ∅ we have [formula]. Then ƒ is a 2-rainbow dominating function or a 2RDF of G. The weight of ƒ is[formula]. The minimum weight of all 2-rainbow dominating functions is 2-rainbow domination number of G, denoted by [formula]. Let G 1 and G2 be two copies of a graph G with disjoint vertex sets V(G 1) and V(G2), and let σ be a function from V(G 1) to V(G2). We define the functigraph C(G,σ) to be the graph that has the vertex set V(C(G, ,σ)) = V(G 1) U V(G2), and the edge set [formula]. In this paper, 2-rainbow domination number of the functigraph of C(G, ,σ) and its complement are investigated. We obtain a general bound for [formula] and we show that this bound is sharp.
Źródło:
Opuscula Mathematica; 2020, 40, 5; 617-627
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Domination hypergraphs of certain digraphs
Autorzy:
Sonntag, M.
Teichert, H. M.
Powiązania:
https://bibliotekanauki.pl/articles/254767.pdf
Data publikacji:
2010
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
hypergraph
dominating set
directed graph
Opis:
If D = (V,A) is a digraph, its domination hypergraph DH(D) = (V, E) has the vertex set V and e ⊆ V is an edge of DH(D) if and only if e is a minimal dominating set of D. We investigate domination hypergraphs of special classes of digraphs, namely tournaments, paths and cycles. Finally, using a special decomposition/composition method we construct edge sets of domination hypergraphs of certain digraphs.
Źródło:
Opuscula Mathematica; 2010, 30, 2; 179-191
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the diameter of dot-critical graphs
Autorzy:
Mojdeh, D. A.
Mirzamani, S.
Powiązania:
https://bibliotekanauki.pl/articles/255186.pdf
Data publikacji:
2009
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
dot-critical graph
domination
diameter
Opis:
A graph G is k-dot-critical (totally k-dot-critical) if G is dot-critical (totally dot-critical) and the domination number is k. In the paper [T. Burtona, D. P. Sumner, Domination dot-critical graphs, Discrete Math, 306(2006), 11-18] the following question is posed: What are the best bounds for the diameter of a k-dot-critical graph and a totally k-dot-critical graph G with no critical vertices for k ≥ 4? We find the best bound for the diameter of a k-dot-critical graph, where k ∈ {4, 5, 6} and we give a family of k-dot-critical graphs (with no critical vertices) with sharp diameter 2k - 3 for even k ≥ 4.
Źródło:
Opuscula Mathematica; 2009, 29, 2; 165-175
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A note on k-Roman graphs
Autorzy:
Bouchou, A.
Blidia, M.
Chellali, M.
Powiązania:
https://bibliotekanauki.pl/articles/255821.pdf
Data publikacji:
2013
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Roman k-domination
k-Roman graph
Opis:
Let G = (V,E) be a graph and let k be a positive integer. A subset D of V (G) is a k-dominating set of G if every vertex in V (G) \D has at least k neighbours in D. The k-domination number Υk(G) is the minimum cardinality of a k-dominating set of G. A Roman k-dominating function on G is a function f : V (G) →{0, 1, 2} such that every vertex u for which f(u) = 0 is adjacent to at least k vertices v1, v2, . . . , vk with f(vi) = 2 for i = 1, 2, . . . , k. The weight of a Roman k-dominating function is the value [formula] and the minimum weight of a Roman k-dominating function on G is called the Roman k-domination number Υk(G) of G. A graph G is said to be a k-Roman graph if ΥkR(G) = 2Υk(G) . In this note we study k-Roman graphs.
Źródło:
Opuscula Mathematica; 2013, 33, 4; 641-646
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
γ-paired dominating graphs of cycles
Autorzy:
Eakawinrujee, Pannawat
Trakultraipruk, Nantapath
Powiązania:
https://bibliotekanauki.pl/articles/2048671.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
paired dominating graph
paired dominating set
paired-domination number
Opis:
A paired dominating set of a graph G is a dominating set whose induced subgraph contains a perfect matching. The paired domination number, denoted by γpr(G), is the minimum cardinality of a paired dominating set of G. A γpr(G)-set is a paired dominating set of cardinality γpr(G). The γ-paired dominating graph of G, denoted by PDγ(G), as the graph whose vertices are γpr(G)-sets. Two γpr(G)-sets D1 and D2 are adjacent in PDγ(G) if there exists a vertex u ∈ D1 and a vertex v /∈ D1 such that D2 = (D1 \ {u}) ∪ {v}. In this paper, we present the γ-paired dominating graphs of cycles.
Źródło:
Opuscula Mathematica; 2022, 42, 1; 31-54
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Independent set dominanting sets in bipartite graphs
Autorzy:
Zelinka, B.
Powiązania:
https://bibliotekanauki.pl/articles/255203.pdf
Data publikacji:
2005
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
set dominanting set
set domination number
independent set
bipartite graph
multihypergraph
Opis:
The paper continues the study of independent set dominating sets in graphs which was started by E. Sampathkumar. A subset D of the vertex set V(G) of a graph G is called a set dominating set (shortly sd-set) in G, if for each set X ikkeq V(G) - D there exists a set Y ikkeq D such that the subgraph of G induced X cup Y is connected. The minimum number of vertices of an sd-set in G is called the set domination number gammas (G) of G. An sd-set D in G such that /D/ = gammas(G) is called a gammas-set in G. In this paper we study sd-sets in bipartite graphs which are simultaneously independent. We apply the theory of hypergraphs.
Źródło:
Opuscula Mathematica; 2005, 25, 2; 345-349
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Signed star (k, k)-domatic number of a graph
Autorzy:
Sheikholeslami, S. M.
Volkmann, L.
Powiązania:
https://bibliotekanauki.pl/articles/254927.pdf
Data publikacji:
2014
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
signed star (k, k)-domatic number
signed star domatic number
signed star k-dominating function
signed star dominating function
signed star k-domination number
signed star domination number
regular graphs
Opis:
Let G be a simple graph without isolated vertices with vertex set V (G) and edge set E(G) and let k be a positive integer. A function ƒ: E(G) →{−1, 1} is said to be a signed star k-dominating function on [formula] for every vertex v of G, where E(v) = {uv ∈ E(G) | u ∈ N(v)}. A set {f1, f2, . . . , fd} of signed star k-dominating functions on G with the property that [formula] for each e ∈ E(G) is called a signed star (k, k)-dominating family (of functions) on G. The maximum number of functions in a signed star (k, k)-dominating family on G is the signed star (k, k)-domatic number of G, denoted by [formula]. In this paper we study properties of the signed star (k, k)-domatic number [formula]. In particular, we present bounds on [formula], and we determine the signed (k, k)-domatic number of some regular graphs. Some of our results extend these given by Atapour, Sheikholeslami, Ghameslou and Volkmann [Signed star domatic number of a graph, Discrete Appl. Math. 158 (2010), 213–218] for the signed star domatic number.
Źródło:
Opuscula Mathematica; 2014, 34, 3; 609-620
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-12 z 12

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies