- Tytuł:
- Monte Carlo simulation of polarization of light back-scattered from randomly rough surfaces
- Autorzy:
-
Jiang, Yuxiang
Li, Zhenhua - Powiązania:
- https://bibliotekanauki.pl/articles/2202767.pdf
- Data publikacji:
- 2023
- Wydawca:
- Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
- Tematy:
-
backscattering
randomly rough surface
Stokes parameters
Monte Carlo method
polarized light - Opis:
- Laser detection devices obtain target information from back-scattered light, such as lidar. The recognition rate can be improved by analyzing intensity and polarization of echo signal. In this paper, Monte Carlo method is used to generate a large number of randomly rough surfaces to simulate targets. Every rough surface is discretized into a large number of micro-surface elements. Stokes parameters of back-scattered light are calculated by numerical integration. Incident light is p-, s-, 45° linearly polarized light and right-hand circularly polarized light, respectively. Numerical results show that when s- and p-linearly polarized light incident on a metal rough surface, back-scattered light appears circularly polarized component. Metal rough surface resembles a wave plate with phase difference, with the fast axis parallel or perpendicular to the 45° direction. When linearly polarized light is incident on dielectric rough surface, back-scattered light has no circularly polarized component. Experimental data are consistent with the numerical results. The above research provides a new basis for laser detection device to identify metal targets from the environmental background.
- Źródło:
-
Optica Applicata; 2023, 53, 1; 65--85
0078-5466
1899-7015 - Pojawia się w:
- Optica Applicata
- Dostawca treści:
- Biblioteka Nauki