Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Wozniak, A." wg kryterium: Autor


Wyświetlanie 1-9 z 9
Tytuł:
Sea surface temperature retrieval from MSG-SEVIRI data in the Baltic Sea area
Autorzy:
Wozniak, M.
Krezel, A.
Powiązania:
https://bibliotekanauki.pl/articles/47694.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
sea surface temperature
Baltic Sea
algorithm
mid-latitude region
spatial resolution
regression analysis
surface temperature
marine environment
climate change
Opis:
The aim of the paper was to confirm the proposition that the classical SST algorithms MCSST and NLSST originally prepared for AVHRR data could also be used for Meteosat/SEVIRI data with satisfactory accuracy in the mid-latitude region, where the spatial resolution is about 7×7 km. The research was performed in the southern Baltic Sea (between 13◦E 53◦N and 21◦E 58◦N). Data were collected in all the seasons of 2007. The coefficients were found by means of regression analysis. SSTs determined on the basis of AVHRR data were used in the regression analysis instead of in situ data. A set of paired AVHRR and SEVIRI images spaced no more than 8 minutes apart were compared. The results show that the method is capable of producing sea surface temperatures with a statistical error (standard deviation) of 1◦C.
Źródło:
Oceanologia; 2010, 52, 3; 331-344
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Development of a satellite method for Baltic ecosystem monitoring (DESAMBEM) - an ongoing project in Poland
Autorzy:
Wozniak, B.
Krezel, A.
Dera, J.
Powiązania:
https://bibliotekanauki.pl/articles/47434.pdf
Data publikacji:
2004
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
primary production
pigment
remote sensing
Polska
radiation
Baltic ecosystem
monitoring
ecosystem
Opis:
A large national project: Development of a satellite method for Baltic ecosystem monitoring (DESAMBEM) for creating mathematical models and a complex algorithm for the remote sensing of the Baltic ecosystem and its primary production is described. The final aim of the project is the development of a routine remote sensing methodology for determining characteristics of the Baltic ecosystem such as distribution maps of surface temperature, water transparency, upwelling currents, phytoplankton blooms, radiation balance, pigment concentrations and primary production. The progress of the study and examples of results are presented.
Źródło:
Oceanologia; 2004, 46, 3
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Longwave radiation budget at the Baltic Sea surface from satellite and atmospheric model data
Autorzy:
Zapadka, T.
Krezel, A.
Wozniak, B.
Powiązania:
https://bibliotekanauki.pl/articles/47597.pdf
Data publikacji:
2008
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
air temperature
sea surface
heat budget
Baltic Sea
temporal analysis
spatial analysis
long-wave radiation
cloud cover
model data
Opis:
The net longwave radiation flux LW↑↓ in the Baltic Sea in 2001 has been subjected to spatial and temporal analysis. Maps of the mean monthly LW↑↓ over the Baltic were drawn using the new semi-empirical formula for the Baltic Sea (Zapadka et al. 2007). The input data for the formula, such as sea surface and air temperatures, and cloud cover, were obtained from the Tiros N/NOAA and METEOSAT 7 satellites and from the UMPLfo recast model (see http://meteo.icm.edu.pl). The mean annual LW↑↓ for 2001 was estimated at 63 W m−2 and compared with available data from other sources. The monthly maps of the net flux LW↑↓ over the Baltic show that the total values reach a minimum (LW↑↓≈50 W m−2) in April, September, October and a maximum (LW↑↓≈80 W m−2) in November. The statistical error of daily maps, on which the monthly maps were based, is no more than 18 W m−2.
Źródło:
Oceanologia; 2008, 50, 2; 147-166
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Algorithms for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 2: Empirical validation
Autorzy:
Darecki, M.
Ficek, D.
Krezel, A.
Ostrowska, M.
Majchrowski, R.
Wozniak, S.B.
Bradtke, K.
Dera, J.
Wozniak, B.
Powiązania:
https://bibliotekanauki.pl/articles/47590.pdf
Data publikacji:
2008
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
light-photosynthesis model
algorithm
chlorophyll
ocean colour
temperature
marine ecosystem
monitoring
empirical validation
primary production
Baltic ecosystem
remote sensing
Opis:
This paper is the second of two articles on the methodology of the remote sensing of the Baltic ecosystem. In Part 1 the authors presented the set of DESAMBEM algorithms for determining the major parameters of this ecosystem on the basis of satellite data (see Woźniak et al. 2008 – this issue). That article discussed in detail the mathematical apparatus of the algorithms. Part 2 presents the effects of the practical application of the algorithms and their validation, the latter based on satellite maps of selected Baltic ecosystem parameters: the distributions of the sea surface temperature (SST), the Photosynthetically Available Radiation (PAR) at the sea surface, the surface concentrations of chlorophyll a and the total primary production of organic matter. Particular emphasis was laid on analysing the precision of estimates of these and other parameters of the Baltic ecosystem, determined by remote sensing methods. The errors in these estimates turned out to be relatively small; hence, the set of DESAMBEM algorithms should in the future be utilised as the foundation for the effective satellite monitoring of the state and functioning of the Baltic ecosystem.
Źródło:
Oceanologia; 2008, 50, 4; 509-538
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Algorithm for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 1: Mathematical apparatus
Autorzy:
Wozniak, B.
Krezel, A.
Darecki, M.
Wozniak, S.B.
Majchrowski, R.
Ostrowska, M.
Kozlowski, L.
Ficek, D.
Olszewski, J.
Dera, J.
Powiązania:
https://bibliotekanauki.pl/articles/47484.pdf
Data publikacji:
2008
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
light-photosynthesis model
algorithm
chlorophyll
mathematical apparatus
temperature
primary production
Baltic ecosystem
remote sensing
Opis:
This article is the first of two papers on the remote sensing methods of monitoring the Baltic ecosystem, developed by our team. Earlier, we had produced a series of detailed mathematical models and statistical regularities describing the transport of solar radiation in the atmosphere-sea system, the absorption of this radiation in the water and its utilisation in a variety of processes, most importantly in the photosynthesis occurring in phytoplankton cells, as a source of energy for the functioning of marine ecosystems. The comprehensive DESAMBEM algorithm, presented in this paper, is a synthesis of these models and regularities. This algorithm enables the abiotic properties of the environment as well as the state and the functioning of the Baltic ecosystem to be assessed on the basis of available satellite data. It can be used to determine a good number of these properties: the sea surface temperature, the natural irradiance of the sea surface, the spectral and spatial distributions of solar radiation energy in the water, the surface concentrations and vertical distributions of chlorophyll a and other phytoplankton pigments in this sea, the radiation energy absorbed by phytoplankton, the quantum efficiency of photosynthesis and the primary production of organic matter. On the basis of these directly determined properties, other characteristics of processes taking place in the Baltic ecosystem can be estimated indirectly. Part 1 of this series of articles deals with the detailed mathematical apparatus of the DESAMBEM algorithm. Part 2 will discuss its practical applicability in the satellite monitoring of the sea and will provide an assessment of the accuracy of such remote sensing methods in the monitoring of the Baltic ecosystem (see Darecki et al. 2008 – this issue).
Źródło:
Oceanologia; 2008, 50, 4; 451-508
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Inherent optical properties of suspended particulate matter in the Southern Baltic Sea
Autorzy:
Wozniak, S.B.
Meller, J.
Lednicka, B.
Zdun, A.
Ston-Egiert, J.
Powiązania:
https://bibliotekanauki.pl/articles/48001.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
Baltic Sea
chlorophyll a
coastal water
Gdansk Gulf
inherent optical property
light absorption
optical property
particulate organic carbon
particulate organic matter
phytoplankton
scattering
surface water
suspended particulate matter
Opis:
The inherent optical properties (IOPs) of suspended particulate matter and their relations with the main biogeochemical characteristics of particles have been examined in the surface waters of the southern Baltic Sea. The empirical data were gathered at over 300 stations in open Baltic Sea waters as well as in the coastal waters of the Gulf of Gdańsk. The measurements included IOPs such as the absorption coefficient of particles, absorption coefficient of phytoplankton, scattering and backscattering coefficients of particles, as well as biogeochemical characteristics of suspended matter such as concentrations of suspended particulate matter (SPM), particulate organic matter (POM), particulate organic carbon (POC) and chlorophyll a (Chl a). Our data documented the very extensive variability in the study area of particle concentration measures and IOPs (up to two orders of magnitude). Although most of the particle populations encoun- tered were composed primarily of organic matter (av. POM/SPM=ca 0.8), the different particle concentration ratios suggest that the particle composition varied significantly. The relations between the optical properties and biogeochemical parameters of suspended matter were examined. We found significant variability in the constituent-specific IOPs (coefficients of variation (CVs) of at least 30% to 40%, usually more than 50%). Simple best-fit relations between any given IOP versus any constituent concentration parameter also highlighted the significant statistical errors involved. As a result, we conclude that for southern Baltic samples an easy yet precise quantification of particle IOPs in terms of the concentration of only one of the following parameters – SPM, POM, POC or Chl a – is not achievable. Nevertheless, we present a set of best statistical formulas for a rough estimate of certain seawater constituent concentrations based on relatively easily measurable values of seawater IOPs. These equations can be implemented in practice, but their application will inevitably entail effective statistical errors of estimation of the order of 50% or more.
Źródło:
Oceanologia; 2011, 53, 3
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Measurement of phytoplankton photosynthesis rate using a pump-and-probe fluorometer
Autorzy:
Antal, T.K.
Venediktov, P.S.
Matorin, D.N.
Ostrowska, M.
Wozniak, B.
Rubin, A.B.
Powiązania:
https://bibliotekanauki.pl/articles/47511.pdf
Data publikacji:
2001
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
phytoplankton
photosynthesis rate
photosynthesis measurement
fluorometer
plant luminescence
fluorometric method
primary production
Opis:
In this work we have studied the possibility of determining the rate of phytoplankton photosynthesis in situ using a submersible pump-and-probe fluorometer in water areas differing in their trophic level, as well as in climatic and hydrophysical characteristics. A biophysical model was used to describe the relationship between photosynthesis, underwater irradiance, and the intensity of phytoplankton fluorescence excited by an artificial light source. Fluorescence intensity was used as a measure of light absorption by phytoplankton and for assessing the efficiency of photochemical energy conversion at photosynthetic reaction centers. Parameters of the model that could not be measured experimentally were determined by calibrating fluorescence and irradiance data against the primary production measured in the Baltic Sea with the radioactive carbon method. It was shown that the standard deviation of these parameters in situ did not exceed 20%, and the use of their mean values to estimate the phytoplankton photosynthetic rate showed a good correlation between the calculated and measured data on primary production in the Baltic (r = 0.89), Norwegian (r = 0.77) and South China (r = 0.76) Seas.
Źródło:
Oceanologia; 2001, 43, 3; 291-313
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
SatBałtyk – A Baltic environmental satellite remote sensing system – an ongoing project in Poland. Part 1: Assumptions, scope and operating range
Autorzy:
Wozniak, B.
Bradtke, K.
Darecki, M.
Dera, J.
Dudzinska-Nowak, J.
Dzierzbicka-Glowacka, L.
Ficek, D.
Furmanczyk, K.
Kowalewski, M.
Krezel, A.
Majchrowski, R.
Ostrowska, M.
Paszkuta, M.
Ston-Egiert, J.
Stramska, M.
Zapadka, T.
Powiązania:
https://bibliotekanauki.pl/articles/48960.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
algal bloom
Baltic ecosystem
Baltic Sea
Baltic water
chlorophyll a
functional property
marine optics
organic matter
phytoplankton pigment
Polska
remote sensing
SatBaltyk project
satellite monitoring
solar radiation
structural property
Opis:
This article is the first of two papers on the remote sensing methods of monitoring the Baltic ecosystem, developed by a Polish team. The main aim of the five- year SatBałtyk (2010–2014) research project (Satellite Monitoring of the Baltic Sea Environment) is to prepare the technical infrastructure and set in motion operational procedures for the satellite monitoring of the Baltic environment. This system is to characterize on a routine basis the structural and functional properties of this sea on the basis of data supplied by the relevant satellites. The characterization and large-scale dissemination of the following properties of the Baltic is anticipated: the solar radiation influx to the sea’s waters in various spectral intervals, energy balances of the short- and long-wave radiation at the Baltic Sea surface and in the upper layers of the atmosphere over the Baltic, sea surface temperature distribution, dynamic states of the water surface, concentrations of chlorophyll a and other phytoplankton pigments in the Baltic water, distributions of algal blooms, the occurrence of upwelling events, and the characteristics of primary organic matter production and photosynthetically released oxygen in the water. It is also intended to develop and, where feasible, to implement satellite techniques for detecting slicks of petroleum derivatives and other compounds, evaluating the state of the sea’s ice cover, and forecasting the hazards from current and future storms and providing evidence of their effects in the Baltic coastal zone. The ultimate objective of the project is to implement an operational system for the routine determination and dissemination on the Internet of the above-mentioned features of the Baltic in the form of distribution maps as well as plots, tables and descriptions characterizing the state of the various elements of the Baltic environment. The main sources of input data for this system will be the results of systematic recording by environmental satellites and also special-purpose ones such as TIROS N/NOAA, MSG (currently Meteosat 9), EOS/AQUA and ENVISAT. The final effects of the SatBałtyk project are to be achieved by the end of 2014, i.e. during a period of 60 months. These two papers present the results obtained during the first 15 months of the project. Part 1 of this series of articles contains the assumptions, objectives and a description of the most important stages in the history of our research, which constitute the foundation of the current project. It also discusses the way in which SatBałtyk functions and the scheme of its overall operations system. The second article (Part 2), will discuss some aspects of its practical applicability in the satellite monitoring of the Baltic ecosystem (see Woźniak et al. (2011) in this issue).
Źródło:
Oceanologia; 2011, 53, 4
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
SatBaltyk – A Baltic environmental satellite remote sensing system – an ongoing project in Poland. Part 2: Practical applicability and preliminary results
Autorzy:
Wozniak, B.
Bradtke, K.
Darecki, M.
Dera, J.
Dudzinska-Nowak, J.
Dzierzbicka-Glowacka, L.
Ficek, D.
Furmanczyk, K.
Kowalewski, M.
Krezel, A.
Majchrowski, R.
Ostrowska, M.
Paszkuta, M.
Ston-Egiert, J.
Stramska, M.
Zapadka, T.
Powiązania:
https://bibliotekanauki.pl/articles/48019.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
Baltic ecosystem
Baltic Sea
energy influx
irradiance condition
marine optics
photosynthesis
plant community
Polska
practical application
preliminary result
radiation balance
remote sensing
SatBaltyk project
satellite monitoring
sea surface
solar energy
Opis:
This paper is the second part of the description of the first stage of the SatBałtyk project’s implementation. Part 1 (Woźniak et al. 2011, in this issue) presents the assumptions and objectives of SatBałtyk and describes the most important stages in the history of our research, which is the foundation of this project. It also discusses the operation and general structure of the SatBałtyk system. Part 2 addresses various aspects of the practical applicability of the SatBałtyk Operational System to Baltic ecosystem monitoring. Examples are given of the Baltic’s characteristics estimated using the preliminary versions of the algorithms in this Operational System. At the current stage of research, these algorithms apply mainly to the characteristics of the solar energy influx and the distribution of this energy among the various processes taking place in the atmosphere-sea system, and also to the radiation balance of the sea surface, the irradiance conditions for photosynthesis and the condition of plant communities in the water, sea surface temperature distributions and some other marine phenomena correlated with this temperature. Monitoring results obtained with these preliminary algorithms are exemplified in the form of distribution maps of selected abiotic parameters of the Baltic, as well as structural and functional characteristics of this ecosystem governed by these parameters in the Baltic’s many basins. The maps cover practically the whole area of the Baltic Sea. Also given are results of preliminary inspections of the accuracy of the magnitudes shown on the maps. In actual fact, the errors of these estimates are relatively small. The further practical application of this set of algorithms (to be gradually made more specific) is therefore entirely justified as the basis of the SatBałtyk system for the effective operational monitoring of the state and functioning of Baltic ecosystems. This article also outlines the plans for extending SatBałtyk to include the recording of the effects and hazards caused by current and expected storm events in the Polish coastal zone.
Źródło:
Oceanologia; 2011, 53, 4
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies