Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "signal filtering" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Short-term positioning accuracy based on mems sensors for smart city solutions
Autorzy:
Grzechca, Damian
Paszek, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/220713.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
electro-mechanical system
received signal strength indicator
positioning
filtering
Opis:
The paper presents a method of obtaining short-term positioning accuracy based on micro electro-mechanical system (MEMS) sensors and analysis of the results. A high-accuracy and fast-positioning algorithm must be included due to the high risk of accidents in cities in the future, especially when autonomous objects are taken into account. High-level positioning systems should consider a number of sub-systems such as global positioning system (GPS), CCTV – video analysis, a system based on analysis of signal strength of access points (AP), etc. Short-term positioning means that there are other locating systems with a sufficiently high degree of accuracy based on, e.g. a video camera, but the located object can disappear when it is hidden by other objects, e.g. people, things, shelves etc. In such a case, MEMS sensors can be employed as a positioning system. The paper examines typical movement profiles of a radio-controlled (RC) model and fundamental filtering methods in respect of position accuracy. The authors evaluate the complexity and delay of the filter and the accuracy of the positioning in respect of the current speed and phase of movement (positive acceleration, constant) of the object. It is necessary to know whether and how the length of the filter changes the position accuracy. It has been shown that the use of fundamental filters, which provide solutions in a short time, enables to locate objects with a small error in a limited time.
Źródło:
Metrology and Measurement Systems; 2019, 26, 1; 95-107
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of multiband filtering, empirical mode decomposition and short-time fourier transform used to extract physiological components from long-term heart rate variability
Autorzy:
Adamczyk, Krzysztof
Polak, Adam G.
Powiązania:
https://bibliotekanauki.pl/articles/2052173.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
heart rate variability
nonstationary signal analysis
multiband filtering
empirical mode decomposition
short-time Fourier transform
Hilbert transform
Opis:
Heart rate is constantly changing under the influence of many control signals, as manifested by heart rate variability (HRV). HRV is a nonstationary, irregularly sampled signal, the spectrum of which reveals distinct bands of high, low, very low and ultra-low frequencies (HF, LF, VLF, ULF). VLF and ULF components are the least understood, and their analysis requires HRV records lasting many hours. Moreover, there are still no well-established methods for the reliable extraction of these components. The aim of this work was to select, implement and compare methods which can solve this problem. The performance of multiband filtering (MBF), empirical mode decomposition and the short-time Fourier transform was tested, using synthetic HRV as the ground truth for methods evaluation as well as real data of three patients selected from 25 polysomnographic records with a clear HF component in their spectrograms. The study provided new insights into the components of long-term HRV, including the character of its amplitude and frequency modulation obtained with the Hilbert transform. In addition, the reliability of the extracted HF, LF, VLF and ULF waveforms was demonstrated, and MBF turned out to be the most accurate method, though the signal is strongly nonstationary. The possibility of isolating such waveforms is of great importance both in physiology and pathophysiology, as well as in the automation of medical diagnostics based on HRV.
Źródło:
Metrology and Measurement Systems; 2021, 28, 4; 643-660
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies